On dit qu’une fonction entière a des lacunes de Fejér si Le résultat principal de cet article est le suivant : Une fonction entière avec des lacunes de Fejér n’a pas de valeur déficiente finie.
We say that an entire function has Fejér gaps if The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.
@article{AIF_1983__33_3_39_0, author = {Murai, Takafumi}, title = {The deficiency of entire functions with {Fej\'er} gaps}, journal = {Annales de l'Institut Fourier}, pages = {39--58}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {3}, year = {1983}, doi = {10.5802/aif.930}, zbl = {0489.30028}, mrnumber = {723947}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.930/} }
TY - JOUR AU - Murai, Takafumi TI - The deficiency of entire functions with Fejér gaps JO - Annales de l'Institut Fourier PY - 1983 SP - 39 EP - 58 VL - 33 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.930/ DO - 10.5802/aif.930 LA - en ID - AIF_1983__33_3_39_0 ER -
Murai, Takafumi. The deficiency of entire functions with Fejér gaps. Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 39-58. doi : 10.5802/aif.930. http://archive.numdam.org/articles/10.5802/aif.930/
[1] Sur les équations algébriques contenant des paramètres arbitraires, Bull. Int. Acad. Polon. Sci. Lett., Sér. A (III) (1927), 542-685. | JFM
,[2] Sur les fonctions entières à séries lacunaires, C.R.A.S., Paris, Sér. A-B, 187 (1928), 477-479. | JFM
,[3] On integral functions with exceptional values, J. London Math. Soc., 42 (1967), 393-400. | MR | Zbl
,[4] Über die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Annalen, (1908), 413-423. | EuDML | JFM | MR
,[5] Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661-667. | MR | Zbl
,[6] Nevanlinna theory and gap series, Symposia on theoretical physics and mathematics, V.9, Plenum Press, New York, 1969. | MR | Zbl
,[7] Meromorphic functions, Oxford, 1964. | MR | Zbl
,[8] Angular value distribution of power series with gaps, Proc. London Math. Soc., (3), 24 (1972), 590-624. | MR | Zbl
,[9] On the Borel exceptional values of lacunary integral functions, J. Analyse Math., 9 (1961/1962), 71-109. | MR | Zbl
,[10] A gap-theorem for entire functions of infinite order, Michigan Math. J., 12 (1965), 133-140. | MR | Zbl
,[11] The deficiency of gap series, Analysis (1983) to appear. | Zbl
,[12] Growth of meromorphic functions of finite lower order, Izv. Akad. Nauk SSSR, Ser. Mat., 33 (1969), 414-454. | Zbl
,[13] Lücken und Singularitäten von Porenzreihen, Math. Z., 29 (1929), 549-640. | JFM
,[14] An analogue of a theorem of W.H.J. Fuchs on gap series, Proc. London Math. Soc., (3), 21 (1970), 525-539. | MR | Zbl
,[15] Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37 (1914), 305-326. | JFM
,[16] Trigonometric series I, Cambridge, 1959. | Zbl
,Cité par Sources :