We consider groups of diffeomorphisms of the closed half-line which fix only the end point. When the group is a Lie group it is isomorphic to a subgroup of the affine group. On the other hand, when the group is isomorphic to a discrete subgroup of a solvable Lie group it is topologically equivalent to a subgroup of the affine group.
Nous considérons des groupes de différomorphismes de la demi-droite fermée qui ne fixe qu’un point. Un tel groupe, s’il est un groupe de Lie, est isomorphe à un sous-groupe du groupe affine. D’autre part, un tel groupe, s’il est isomorphe à un sous-groupe discret d’un groupe de Lie résoluble, est topologiquement équivalent à un sous-groupe du groupe affine.
@article{AIF_1984__34_1_47_0, author = {Plante, Joseph F.}, title = {Subgroups of continuous groups acting differentiably on the half-line}, journal = {Annales de l'Institut Fourier}, pages = {47--56}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {34}, number = {1}, year = {1984}, doi = {10.5802/aif.950}, mrnumber = {86j:58020}, zbl = {0519.57037}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.950/} }
TY - JOUR AU - Plante, Joseph F. TI - Subgroups of continuous groups acting differentiably on the half-line JO - Annales de l'Institut Fourier PY - 1984 SP - 47 EP - 56 VL - 34 IS - 1 PB - Imprimerie Louis-Jean PP - Gap UR - http://archive.numdam.org/articles/10.5802/aif.950/ DO - 10.5802/aif.950 LA - en ID - AIF_1984__34_1_47_0 ER -
%0 Journal Article %A Plante, Joseph F. %T Subgroups of continuous groups acting differentiably on the half-line %J Annales de l'Institut Fourier %D 1984 %P 47-56 %V 34 %N 1 %I Imprimerie Louis-Jean %C Gap %U http://archive.numdam.org/articles/10.5802/aif.950/ %R 10.5802/aif.950 %G en %F AIF_1984__34_1_47_0
Plante, Joseph F. Subgroups of continuous groups acting differentiably on the half-line. Annales de l'Institut Fourier, Volume 34 (1984) no. 1, pp. 47-56. doi : 10.5802/aif.950. http://archive.numdam.org/articles/10.5802/aif.950/
[1] Continuous groups, Chelsea, New York (1966).
,[2] Sur les feuilletages induits par l'action de groupes de Lie nilpotents, Ann. Inst. Fourier, 27-2 (1977), 161-190. | Numdam | MR | Zbl
,[3] Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., (9) 11 (1932), 333-375. | JFM | Numdam
,[4] On manifolds foliated by nilpotent Lie group actions, preprint Lille (1980).
,[5] Commuting diffeomorphisms, Proc. Symposia Pure Math., v. 14, A.M.S., (1969), 165-184. | MR | Zbl
,[6] On fundamental groups of complete affinely flat manifolds, Adv. Math., 25 (1977), 178-187. | MR | Zbl
,[7] Foliations with measure preserving holonomy, Ann. Math., 102 (1975), 327-361. | MR | Zbl
,[8] Solvable groups acting on this line, Trans. A.M.S., 278 (1983), 401-414. | MR | Zbl
,[9] Polynomial growth in holonomy groups of foliations, Comm. Math. Helv., 39 (51) (1976), 567-584. | MR | Zbl
, ,[10] A generalization of the Reeb Stability Theorem, Topology, 13 (1974), 347-352. | MR | Zbl
,[11] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geom., 2 (1968), 421-446. | MR | Zbl
,Cited by Sources: