We give an explicit presentation for each lower bound cluster algebra. Using this presentation, we show that each lower bound algebra Gröbner degenerates to the Stanley–Reisner scheme of a vertex-decomposable ball or sphere, and is thus Cohen–Macaulay. Finally, we use Stanley–Reisner combinatorics and a result of Knutson–Lam–Speyer to show that all lower bound algebras are normal.
Accepted:
Published online:
DOI: 10.5802/alco.2
Keywords: Cluster algebras, lower bound cluster algebras, combinatorial commutative algebra, Stanley–Reisner complexes
@article{ALCO_2018__1_1_95_0, author = {Muller, Greg and Rajchgot, Jenna and Zykoski, Bradley}, title = {Lower bound cluster algebras: presentations, {Cohen{\textendash}Macaulayness,} and normality}, journal = {Algebraic Combinatorics}, pages = {95--114}, publisher = {MathOA foundation}, volume = {1}, number = {1}, year = {2018}, doi = {10.5802/alco.2}, zbl = {06882336}, mrnumber = {3857161}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/alco.2/} }
TY - JOUR AU - Muller, Greg AU - Rajchgot, Jenna AU - Zykoski, Bradley TI - Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality JO - Algebraic Combinatorics PY - 2018 SP - 95 EP - 114 VL - 1 IS - 1 PB - MathOA foundation UR - http://archive.numdam.org/articles/10.5802/alco.2/ DO - 10.5802/alco.2 LA - en ID - ALCO_2018__1_1_95_0 ER -
%0 Journal Article %A Muller, Greg %A Rajchgot, Jenna %A Zykoski, Bradley %T Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality %J Algebraic Combinatorics %D 2018 %P 95-114 %V 1 %N 1 %I MathOA foundation %U http://archive.numdam.org/articles/10.5802/alco.2/ %R 10.5802/alco.2 %G en %F ALCO_2018__1_1_95_0
Muller, Greg; Rajchgot, Jenna; Zykoski, Bradley. Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality. Algebraic Combinatorics, Volume 1 (2018) no. 1, pp. 95-114. doi : 10.5802/alco.2. http://archive.numdam.org/articles/10.5802/alco.2/
[1] Singularities of locally acyclic cluster algebras, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 913-936 | DOI | MR | Zbl
[2] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl
[3] A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics (New York, 1978) (Ann. New York Acad. Sci.), Volume 319, New York Acad. Sci., New York, 1979, pp. 82-85 | MR | Zbl
[4] Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl
[5] Groebner bases, initial ideals and initial algebras, 2003 (arXiv:math/0308102)
[6] On maximal green sequences, Int. Math. Res. Not. (2014) no. 16, pp. 4547-4586 | DOI | MR | Zbl
[7] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | MR | Zbl
[8] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[9] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[10] Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 3, pp. 825-876 | DOI | Numdam | MR | Zbl
[11] Cluster algebras and Weil-Petersson forms, Duke Math. J., Volume 127 (2005) no. 2, pp. 291-311 | DOI | MR | Zbl
[12] Canonical bases for cluster algebras, 2014 (arXiv:1411.1394) | Zbl
[13] Frobenius splitting, point-counting, and degeneration, 2009 (arXiv:0911.4941)
[14] Projections of Richardson varieties, J. Reine Angew. Math., Volume 687 (2014), pp. 133-157 | DOI | MR | Zbl
[15] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl
[16] Locally acyclic cluster algebras, Adv. Math., Volume 233 (2013), pp. 207-247 | DOI | MR | Zbl
[17] A=U for locally acyclic cluster algebras, SIGMA, Volume 10 (2014), 094, 8 pages | DOI | MR | Zbl
[18] The existence of a maximal green sequence is not invariant under quiver mutation, 2015 (arXiv:1503.04675) | Zbl
[19] Topological results in combinatorics, Michigan Math. J., Volume 31 (1984) no. 1, pp. 113-128 | DOI | MR | Zbl
[20] Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl
Cited by Sources: