A property of the Birkhoff polytope
Algebraic Combinatorics, Volume 1 (2018) no. 2, pp. 275-281.

The Birkhoff polytope B n is the convex hull of all n×n permutation matrices in n×n . We compute the combinatorial symmetry group of the Birkhoff polytope.

A representation polytope is the convex hull of some finite matrix group GGL(d,). We show that the group of permutation matrices is essentially the only finite matrix group which yields a representation polytope with the same face lattice as the Birkhoff polytope.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.6
Classification: 52B15, 05E18, 20B25, 20C15, 52B05, 52B12
Keywords: Birkhoff polytope, representation polytope, permutation polytope, combinatorial symmetry
Baumeister, Barbara 1; Ladisch, Frieder 2

1 Universität Bielefeld Postfach 100131 33501 Bielefeld Germany
2 Universität Rostock Institut für Mathematik 18051 Rostock Germany
@article{ALCO_2018__1_2_275_0,
     author = {Baumeister, Barbara and Ladisch, Frieder},
     title = {A property of the {Birkhoff} polytope},
     journal = {Algebraic Combinatorics},
     pages = {275--281},
     publisher = {MathOA foundation},
     volume = {1},
     number = {2},
     year = {2018},
     doi = {10.5802/alco.6},
     zbl = {06882342},
     mrnumber = {3856525},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/alco.6/}
}
TY  - JOUR
AU  - Baumeister, Barbara
AU  - Ladisch, Frieder
TI  - A property of the Birkhoff polytope
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 275
EP  - 281
VL  - 1
IS  - 2
PB  - MathOA foundation
UR  - http://archive.numdam.org/articles/10.5802/alco.6/
DO  - 10.5802/alco.6
LA  - en
ID  - ALCO_2018__1_2_275_0
ER  - 
%0 Journal Article
%A Baumeister, Barbara
%A Ladisch, Frieder
%T A property of the Birkhoff polytope
%J Algebraic Combinatorics
%D 2018
%P 275-281
%V 1
%N 2
%I MathOA foundation
%U http://archive.numdam.org/articles/10.5802/alco.6/
%R 10.5802/alco.6
%G en
%F ALCO_2018__1_2_275_0
Baumeister, Barbara; Ladisch, Frieder. A property of the Birkhoff polytope. Algebraic Combinatorics, Volume 1 (2018) no. 2, pp. 275-281. doi : 10.5802/alco.6. http://archive.numdam.org/articles/10.5802/alco.6/

[1] Baumeister, Barbara; Grüninger, Matthias On Permutation Polytopes: Notions of Equivalence, J. Algebraic Combin., Volume 41 (2015) no. 4, pp. 1103-1114 | DOI | MR | Zbl

[2] Baumeister, Barbara; Haase, Christian; Nill, Benjamin; Paffenholz, Andreas On Permutation Polytopes, Adv. Math., Volume 222 (2009) no. 2, pp. 431-452 | DOI | MR | Zbl

[3] Baumeister, Barbara; Haase, Christian; Nill, Benjamin; Paffenholz, Andreas Permutation Polytopes of Cyclic Groups, 2011, 15 pages (preprint, https://arxiv.org/abs/1109.0191v1) | MR | Zbl

[4] Chermak, Andrew; Delgado, Alberto A Measuring Argument for Finite Groups, Proc. Amer. Math. Soc., Volume 107 (1989) no. 4, pp. 907-914 | DOI | MR | Zbl

[5] Friese, Erik; Ladisch, Frieder Affine Symmetries of Orbit Polytopes, Adv. Math., Volume 288 (2016), pp. 386-425 | DOI | MR | Zbl

[6] Guralnick, Robert M.; Perkinson, David Permutation Polytopes and Indecomposable Elements in Permutation Groups, J. Combin. Theory Ser. A, Volume 113 (2006) no. 7, pp. 1243-1256 | DOI | MR | Zbl

[7] Isaacs, I. Martin Finite Group Theory, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008 no. 92, xii+350 pages | DOI | MR | Zbl

[8] Li, Chi-Kwong; Spitkovsky, Ilya; Zobin, Nahum Finite Reflection Groups and Linear Preserver Problems, Rocky Mountain J. Math., Volume 34 (2004) no. 1, pp. 225-251 | DOI | MR | Zbl

[9] Li, Chi-Kwong; Tam, Bit-Shun; Tsing, Nam-Kiu Linear Maps Preserving Permutation and Stochastic Matrices, Linear Algebra Appl., Volume 341 (2002), pp. 5-22 | DOI | MR | Zbl

[10] Lovász, László; Plummer, Michael D. Matching Theory, North-Holland Mathematics Studies, North-Holland, 1986 no. 121, xxvii+544 pages (Annals of Discrete Mathematics 29) | MR | Zbl

Cited by Sources: