Analytical properties of power series on Levi-Civita fields
Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 2, pp. 309-329.

A detailed study of power series on the Levi-Civita fields is presented. After reviewing two types of convergence on those fields, including convergence criteria for power series, we study some analytical properties of power series. We show that within their domain of convergence, power series are infinitely often differentiable and re-expandable around any point within the radius of convergence from the origin. Then we study a large class of functions that are given locally by power series and contain all the continuations of real power series. We show that these functions have similar properties as real analytic functions. In particular, they are closed under arithmetic operations and composition and they are infinitely often differentiable.

DOI : 10.5802/ambp.209
Shamseddine, Khodr 1 ; Berz, Martin 2

1 Western Illinois University Department of Mathematics Macomb, IL 61455 USA
2 Michigan State University Department of Physics and Astronomy East Lansing, MI 48824 USA
@article{AMBP_2005__12_2_309_0,
     author = {Shamseddine, Khodr and Berz, Martin},
     title = {Analytical properties of power series on {Levi-Civita} fields},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {309--329},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {2},
     year = {2005},
     doi = {10.5802/ambp.209},
     zbl = {1087.26020},
     mrnumber = {1760545},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.209/}
}
TY  - JOUR
AU  - Shamseddine, Khodr
AU  - Berz, Martin
TI  - Analytical properties of power series on Levi-Civita fields
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
SP  - 309
EP  - 329
VL  - 12
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.209/
DO  - 10.5802/ambp.209
LA  - en
ID  - AMBP_2005__12_2_309_0
ER  - 
%0 Journal Article
%A Shamseddine, Khodr
%A Berz, Martin
%T Analytical properties of power series on Levi-Civita fields
%J Annales mathématiques Blaise Pascal
%D 2005
%P 309-329
%V 12
%N 2
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.209/
%R 10.5802/ambp.209
%G en
%F AMBP_2005__12_2_309_0
Shamseddine, Khodr; Berz, Martin. Analytical properties of power series on Levi-Civita fields. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 2, pp. 309-329. doi : 10.5802/ambp.209. http://archive.numdam.org/articles/10.5802/ambp.209/

[1] Alling, N. L. Foundations of analysis over surreal number fields, North Holland, 1987 | MR | Zbl

[2] Berz, M. Analysis on a nonarchimedean extension of the real numbers (1994) no. MSUCL-933 (Lecture Notes, 1992 and 1995 Mathematics Summer Graduate Schools of the German National Merit Foundation.)

[3] Berz, M.; Berz, M.; Bischof, C.; Corliss, G.; Griewank, A. Calculus and numerics on Levi-Civita fields, Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia (1996), pp. 19-35 | MR | Zbl

[4] Berz, M. Cauchy Theory on Levi-Civita fields, Contemporary Mathematics, American Mathematical Society, Volume 319 (2003), pp. 39-52 | MR | Zbl

[5] Berz, M. Analytical and Computational Methods for the Levi-Civita fields, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker (Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0), pp. 21-34 | MR | Zbl

[6] Krull, W. Allgemeine Bewertungstheorie, J. Reine Angew. Math., Volume 167 (1932), pp. 160-196 | DOI | Zbl

[7] Laugwitz, D. Tullio Levi-Civita’s Work on Nonarchimedean Structures (with an Appendix: Properties of Levi-Civita Fields), Atti Dei Convegni Lincei 8: Convegno Internazionale Celebrativo Del Centenario Della Nascita De Tullio Levi-Civita, Academia Nazionale dei Lincei, Roma (1975)

[8] Levi-Civita, T. Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti Ist. Veneto di Sc., Lett. ed Art., Volume 7a, 4 (1892), pp. 1765

[9] Levi-Civita, T. Sui numeri transfiniti, Rend. Acc. Lincei, Volume 5a, 7 (1898), pp. 91-113

[10] Neder, L. Modell einer Leibnizschen Differentialrechnung mit aktual unendlich kleinen Größen, Mathematische Annalen, Volume 118 (1941-1943), pp. 718-732 | DOI | MR | Zbl

[11] Osgood, W. F. Functions of real variables, G. E. Stechert & CO., New York, 1938 | Zbl

[12] Priess-Crampe, S. Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Springer, Berlin, 1983 | MR | Zbl

[13] Ribenboim, P. Fields: algebraically closed and others, Manuscripta Mathematica, Volume 75 (1992), pp. 115-150 | DOI | MR | Zbl

[14] Schikhof, W. H. Ultrametric calculus: an introduction to p-adic analysis, Cambridge University Press, 1985 | MR | Zbl

[15] Shamseddine, K.; Berz, M.; Berz, M.; Bischof, C.; Corliss, G.; Griewank, A. Exception handling in derivative computation with non-archimedean calculus, Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia (1996), pp. 37-51 | MR | Zbl

[16] Shamseddine, K.; Berz, M. Intermediate values and inverse functions on non-archimedean fields, International Journal of Mathematics and Mathematical Sciences, Volume 30 (2002), pp. 165-176 | DOI | MR | Zbl

[17] Shamseddine, K.; Berz, M. Measure theory and integration on the Levi-Civita field, Contemporary Mathematics, Volume 319 (2003), pp. 369-387 | MR | Zbl

[18] Shamseddine, K.; Berz, M. Convergence on the Levi-Civita field and study of power series, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker (Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0), pp. 283-299 | MR | Zbl

[19] Shamseddine, K. New elements of analysis on the Levi-Civita field, Michigan State University, East Lansing, Michigan, USA (1999) (Ph. D. Thesis also Michigan State University report MSUCL-1147)

Cité par Sources :