In this paper we generalize the Pascal triangle and examine the connections among the generalized triangles and powering integers respectively polynomials. We emphasize the relationship between the new triangles and the Pascal pyramids, moreover we present connections with the binomial and multinomial theorems.
@article{AMBP_2006__13_1_1_0, author = {Kall\'os, G\'abor}, title = {A generalization of {Pascal{\textquoteright}s} triangle using powers of base numbers}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--15}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {13}, number = {1}, year = {2006}, doi = {10.5802/ambp.211}, zbl = {1172.11302}, mrnumber = {2233009}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.211/} }
TY - JOUR AU - Kallós, Gábor TI - A generalization of Pascal’s triangle using powers of base numbers JO - Annales mathématiques Blaise Pascal PY - 2006 SP - 1 EP - 15 VL - 13 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.211/ DO - 10.5802/ambp.211 LA - en ID - AMBP_2006__13_1_1_0 ER -
%0 Journal Article %A Kallós, Gábor %T A generalization of Pascal’s triangle using powers of base numbers %J Annales mathématiques Blaise Pascal %D 2006 %P 1-15 %V 13 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.211/ %R 10.5802/ambp.211 %G en %F AMBP_2006__13_1_1_0
Kallós, Gábor. A generalization of Pascal’s triangle using powers of base numbers. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 1-15. doi : 10.5802/ambp.211. http://archive.numdam.org/articles/10.5802/ambp.211/
[1] Pascal’s pyramid, Math. Teacher, Volume 61 (1968), pp. 19-21
[2] A note on Pascal-T triangles, multinomial coefficients, and Pascal pyramids, The Fibonacci Quarterly, Volume 24.2 (1986), pp. 140-144 | MR | Zbl
[3] Generalized Pascal triangles and pyramids, their fractals, graphs and applications, The Fibonacci Association, Santa Clara, 1993 (Translated from russian by Richard C. Bollinger) | Zbl
[4] Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, Volume 34 (1996), pp. 109-121 | Zbl
[5] Restricted occupancy theory – a generalization of Pascal’s triangle, Amer. Math. Monthly, Volume 63 (1956), pp. 20-27 | DOI | MR | Zbl
[6] Generalizations of Pascal’s triangle (1993) Master thesis (in Hungarian), Eötvös Loránd University, Budapest
[7] The generalization of Pascal’s triangle from algebraic point of view, Acta Acad. Paed. Agriensis, Volume XXIV (1997), pp. 11-18 | Zbl
[8] Pascal’s triangle and powers of 11, Math. Teacher, Volume 57 (1964), pp. 392-394
[9] On-line encyclopedia of integer sequences http://www.research.att.com/~njas/sequences/ (Internet Database) | Zbl
Cité par Sources :