Approximation scheme for solutions of backward stochastic differential equations via the representation theorem
Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 17-29.

We are interested in the approximation and simulation of solutions for the backward stochastic differential equations. We suggest two approximation schemes, and we study the 𝕃 2 induced error.

DOI : 10.5802/ambp.212
El Otmani, Mohamed 1

1 Faculty of Sciences Semlalia Department of Mathematics Cadi Ayyad University BP 2390 Marrakesh MOROCCO
@article{AMBP_2006__13_1_17_0,
     author = {El Otmani, Mohamed},
     title = {Approximation scheme for solutions of backward stochastic differential equations via the representation theorem},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {17--29},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {1},
     year = {2006},
     doi = {10.5802/ambp.212},
     zbl = {1134.60349},
     mrnumber = {2233010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.212/}
}
TY  - JOUR
AU  - El Otmani, Mohamed
TI  - Approximation scheme for solutions of backward stochastic differential equations via the representation theorem
JO  - Annales mathématiques Blaise Pascal
PY  - 2006
SP  - 17
EP  - 29
VL  - 13
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.212/
DO  - 10.5802/ambp.212
LA  - en
ID  - AMBP_2006__13_1_17_0
ER  - 
%0 Journal Article
%A El Otmani, Mohamed
%T Approximation scheme for solutions of backward stochastic differential equations via the representation theorem
%J Annales mathématiques Blaise Pascal
%D 2006
%P 17-29
%V 13
%N 1
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.212/
%R 10.5802/ambp.212
%G en
%F AMBP_2006__13_1_17_0
El Otmani, Mohamed. Approximation scheme for solutions of backward stochastic differential equations via the representation theorem. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 17-29. doi : 10.5802/ambp.212. http://archive.numdam.org/articles/10.5802/ambp.212/

[1] Bally, V. An approximation scheme for BSDEs and applications to control and nonlinear PDE’s, Pitman Research Notes in Mathematics Series (1997) (364, Longman)

[2] Bouchard, B.; Ekeland, I.; Touzi, N. On the Malliavin approach to Monte Carlo approximation of conditional expectations, Finance Stoch, Volume 111 (2) (2004), pp. 175-206 | MR | Zbl

[3] Bouchard, B.; Touzi, N. Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications, Volume 8 (1) (2004), pp. 45-71 | MR | Zbl

[4] Carriére, J.F. Valuation of the early-exercise price for option using simulations and nonparametric regression, Insurance:Mathematics and Economics, Volume 19 (1996), pp. 19-30 | DOI | MR | Zbl

[5] Chevance, D.; Rogers, L.C.G.; Talay, D Numerical methods for backward stochastic differential equations, Numerical methods in finance, Cambridge University Press, 1997, pp. 232-244 | MR | Zbl

[6] Cvitanic, J.; Karatzas, I. Backward stochastic differential equations with reflection and Dynkin games, The Annals of Probability, Volume 24 (1996), pp. 2024-2056 | DOI | MR | Zbl

[7] Douglas, J.; Ma, J.; Protter, P. Numerical methods for forward-backward stochastic differential equations, Annals of Applied Probability, Volume 6 (1996), pp. 940-968 | DOI | MR | Zbl

[8] El Karoui, N.; Peng, S.; Quenez, Mc. Backward stochastic differential equations in finance, Mathematical Finance (1997), pp. 1-71 | DOI | MR | Zbl

[9] Faure, O. Simulation du mouvement brownien et des diffusions (1992) (PhD thesis, Ecole Nationale des Ponts et Chaussées)

[10] Gobet, E.; Lemor, J.P.; Warin, X. A regression-based Monte-Carlo method to solve backward stochastic differential equations, Annals of Applied Probability, Volume 15(3) (2005), p. 2172-2002 | DOI | MR | Zbl

[11] Hamadène, S.; Lepeltier, J-P Zero-sum stochastic differential games and BSDEs, Systems and Control letters, Volume 24 (1995), pp. 259-263 | DOI | MR | Zbl

[12] Longstaff, F.; Schwartz, E. Valuing american options by simulation: a simple least squares approach, The review of Financial studies, Volume 14(1) (2001), pp. 113-147 | DOI

[13] Ma, J.; Protter, P.; Young, J. Solving forward backward stochastic differential equations explicitly: a four step scheme, Probability Theory and Related Fields, Volume 98 (1994), pp. 339-359 | DOI | MR | Zbl

[14] Ma, J.; Zhang, J. Representation theorems for backward stochastic differential equations, The Annals of Applied Probability, Volume 12(4) (2002), pp. 1390-1418 | MR | Zbl

[15] Ma, J.; Zhang, J. Representation and regularities for solutions to BSDE’s with reflections, Stochastic Processes and their Applications, Volume 115 (2005), pp. 539-569 | DOI | MR | Zbl

[16] Pardoux, E.; Peng, S. Adapted solution of backward stochastic differential equations, Systems and control Letters, Volume 14 (1990), pp. 51-61 | DOI | Zbl

[17] Zhang, J. A numerical scheme for BSDE’s, The Annals of Applied Probability, Volume 14(1) (2004), pp. 459-488 | DOI | Zbl

Cité par Sources :