Geometric types of twisted knots
Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 31-85.

Let K be a knot in the 3-sphere S 3 , and Δ a disk in S 3 meeting K transversely in the interior. For non-triviality we assume that |ΔK|2 over all isotopies of K in S 3 -Δ. Let K Δ,n (S 3 ) be a knot obtained from K by n twistings along the disk Δ. If the original knot is unknotted in S 3 , we call K Δ,n a twisted knot. We describe for which pair (K,Δ) and an integer n, the twisted knot K Δ,n is a torus knot, a satellite knot or a hyperbolic knot.

DOI : 10.5802/ambp.213
Aït-Nouh, Mohamed 1 ; Matignon, Daniel 2 ; Motegi, Kimihiko 3

1 Department of Mathematics University of California at Santa Barbara Boston, MA 02215 USA
2 CMI, UMR 6632 du CNRS Université d’Aix-Marseille I 39, rue Joliot Curie F-13453 Marseille Cedex 13 FRANCE
3 Department of Mathematics Nihon University Tokyo 156-8550 JAPAN
@article{AMBP_2006__13_1_31_0,
     author = {A{\"\i}t-Nouh, Mohamed and Matignon, Daniel and Motegi, Kimihiko},
     title = {Geometric types of twisted knots},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {31--85},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {1},
     year = {2006},
     doi = {10.5802/ambp.213},
     zbl = {1158.57005},
     mrnumber = {2233011},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.213/}
}
TY  - JOUR
AU  - Aït-Nouh, Mohamed
AU  - Matignon, Daniel
AU  - Motegi, Kimihiko
TI  - Geometric types of twisted knots
JO  - Annales mathématiques Blaise Pascal
PY  - 2006
SP  - 31
EP  - 85
VL  - 13
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.213/
DO  - 10.5802/ambp.213
LA  - en
ID  - AMBP_2006__13_1_31_0
ER  - 
%0 Journal Article
%A Aït-Nouh, Mohamed
%A Matignon, Daniel
%A Motegi, Kimihiko
%T Geometric types of twisted knots
%J Annales mathématiques Blaise Pascal
%D 2006
%P 31-85
%V 13
%N 1
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.213/
%R 10.5802/ambp.213
%G en
%F AMBP_2006__13_1_31_0
Aït-Nouh, Mohamed; Matignon, Daniel; Motegi, Kimihiko. Geometric types of twisted knots. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 31-85. doi : 10.5802/ambp.213. http://archive.numdam.org/articles/10.5802/ambp.213/

[1] Aït Nouh, M.; Matignon, D.; Motegi, K. Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 321-326 | MR | Zbl

[2] Aït Nouh, M.; Matignon, D.; Motegi, K. Obtaining graph knots by twisting unknots, Topology Appl., Volume 146-147 (2005), pp. 105-121 | DOI | MR | Zbl

[3] Culler, M.; C. McA. Gordon, J. Luecke; Shalen, P. B. Dehn surgery on knots, Ann. Math, Volume 125 (1987), pp. 237-300 | DOI | MR | Zbl

[4] Glass, L. A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser., Volume B15 (1973), pp. 264-268 | DOI | MR | Zbl

[5] Goda, H.; Hayashi, C.; Song, H-J. Dehn surgeries on 2 -bridge links which yield reducible 3 -manifolds (preprint)

[6] Goodman-Strauss, C. On composite twisted unknots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4429-4463 | DOI | MR | Zbl

[7] Gordon, C.McA. Combinatorial methods in Dehn surgery, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 263-290 | MR | Zbl

[8] Gordon, C.McA.; Litherland, R. A. Incompressible planar surfaces in 3-manifolds, Topology Appl., Volume 18 (1984), pp. 121-144 | DOI | MR | Zbl

[9] Gordon, C.McA.; Luecke, J. Knots are determined by their complements, J. Amer. Math. Soc., Volume 2 (1989), pp. 371-415 | DOI | MR | Zbl

[10] Gordon, C.McA.; Luecke, J. Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., Volume 4 (1995), pp. 597-644 | MR | Zbl

[11] Gordon, C.McA.; Luecke, J. Toroidal and boundary-reducing Dehn fillings, Topology Appl., Volume 93 (1999), pp. 77-90 | DOI | MR | Zbl

[12] Gordon, C.McA.; Luecke, J. Non-integral toroidal Dehn surgeries, Comm. Anal. Geom., Volume 12 (2004), pp. 417-485 | MR | Zbl

[13] Hayashi, C.; Motegi, K. Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4465-4479 | DOI | MR | Zbl

[14] Jaco, W.; Shalen, P. B. Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., Volume 220 (1979) | MR | Zbl

[15] Johannson, K. Homotopy equivalences of 3 -manifolds with boundaries, Lect.Notes in Math, Springer-Verlag, 1979 | MR | Zbl

[16] Kouno, M.; Motegi, K.; Shibuya, T. Twisting and knot types, J. Math. Soc. Japan, Volume 44 (1992), pp. 199-216 | DOI | MR | Zbl

[17] Mathieu, Y. Unknotting, knotting by twists on disks and property (P) for knots in S 3 , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), pp. 93-102 | MR | Zbl

[18] Menasco, W. Closed incompressible surfaces in alternating knot and link complements, Topology, Volume 23 (1984), pp. 37-44 | DOI | MR | Zbl

[19] Miyazaki, K.; Motegi, K. Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom., Volume 7 (1999), pp. 551-582 | MR | Zbl

[20] Morgan, J.; Bass, H. The Smith conjecture, Academic Press, 1984 | MR | Zbl

[21] Motegi, K. Knot types of satellite knots and twisted knots, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 579-603 | MR | Zbl

[22] Motegi, K.; Shibuya, T. Are knots obtained from a plain pattern always prime ?, Kobe J. Math., Volume 9 (1992), pp. 39-42 | MR | Zbl

[23] Ohyama, Y. Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, Volume 7 (1994), pp. 289-305 | MR | Zbl

[24] Rolfsen, D. Knots and links, Publish or Perish, Berkeley, Calif., 1976 | MR | Zbl

[25] Scharlemann, M. Unknotting-number-one knots are prime, Invent. Math., Volume 82 (1985), pp. 37-55 | DOI | MR | Zbl

[26] Scharlemann, M. Producing reducible 3-manifolds by surgery on a knot, Topology, Volume 29 (1990), pp. 481-500 | DOI | MR | Zbl

[27] Teragaito, M. Composite knots trivialized by twisting, J. Knot Theory Ramifications, Volume 1 (1992), pp. 1623-1629 | DOI | MR | Zbl

[28] Thurston, W. P. The geometry and topology of 3 -manifolds, Lecture notes, Princeton University, 1979

[29] Wu, Y-Q. Dehn surgery on arborescent links, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2275-2294 | DOI | MR | Zbl

Cité par Sources :