Let be an -type group and be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator on , obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family of neighbourhoods of the identity. We prove that the maximal operator is of weak type .
@article{AMBP_2006__13_1_87_0, author = {Vallarino, Maria}, title = {A maximal function on harmonic extensions of $H$-type groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {87--101}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {13}, number = {1}, year = {2006}, doi = {10.5802/ambp.214}, zbl = {1137.43003}, mrnumber = {2233012}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.214/} }
TY - JOUR AU - Vallarino, Maria TI - A maximal function on harmonic extensions of $H$-type groups JO - Annales mathématiques Blaise Pascal PY - 2006 SP - 87 EP - 101 VL - 13 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.214/ DO - 10.5802/ambp.214 LA - en ID - AMBP_2006__13_1_87_0 ER -
%0 Journal Article %A Vallarino, Maria %T A maximal function on harmonic extensions of $H$-type groups %J Annales mathématiques Blaise Pascal %D 2006 %P 87-101 %V 13 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.214/ %R 10.5802/ambp.214 %G en %F AMBP_2006__13_1_87_0
Vallarino, Maria. A maximal function on harmonic extensions of $H$-type groups. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 87-101. doi : 10.5802/ambp.214. http://archive.numdam.org/articles/10.5802/ambp.214/
[1] Multipliers for a distinguished Laplacian on solvable extensions of -type groups, Monatsh. Math., Volume 120 (1995), pp. 179-188 | DOI | MR | Zbl
[2] -type groups and Iwasawa decompositions, Adv. Math, Volume 87 (1991), pp. 1-41 | DOI | MR | Zbl
[3] An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., Volume 8 (1998), pp. 199-237 | MR | Zbl
[4] Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math., Volume 111 (1994), pp. 103-121 | MR | Zbl
[5] Curvature of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 255-268 | MR | Zbl
[6] Geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 249-253 | MR | Zbl
[7] A class of nonsymmetric harmonic riemannian spaces, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992), pp. 139-142 | DOI | MR | Zbl
[8] Harmonic analysis on solvable extensions of -type groups, J. Geom. Anal., Volume 2 (1992), pp. 213-248 | MR | Zbl
[9] Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982 | MR | Zbl
[10] Asymmetry of maximal functions on the affine group of the line, Tohoku Math. J., Volume 42 (1990), pp. 195-203 | DOI | MR | Zbl
[11] Maximal functions on the group of affine transformations of , Quaderno Dip. Mat. “F. Enriques”, Milano, Volume 1 (1987)
[12] Analysis of a distinguished Laplacian on solvable Lie groups, Math. Nachr., Volume 163 (1993), pp. 151-162 | DOI | MR | Zbl
[13] A note on maximal functions on a solvable Lie group, Arch. Math. (Basel), Volume 55 (1990), pp. 156-160 | MR | Zbl
[14] Multipliers and singular integrals on exponential growth groups, Math. Z., Volume 245 (2003), pp. 37-61 | DOI | MR | Zbl
[15] Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., Volume 258 (1975), pp. 145-159 | MR | Zbl
[16] Spectral multipliers on harmonic extensions of -type groups (2005) (J. Lie Theory, to appear)
Cité par Sources :