Diamond representations of 𝔰𝔩(n)
Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 381-429.

In [6], there is a graphic description of any irreducible, finite dimensional 𝔰𝔩(3) module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional 𝒰 q (𝔰𝔩(3))-modules.

In the present work, we generalize this construction to 𝔰𝔩(n). We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of 𝔰𝔩(n). The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux. To compute the matrix coefficients of the representation in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker relations defining the reduced shape algebra.

DOI : 10.5802/ambp.222
Arnal, Didier 1 ; Bel Baraka, Nadia 1 ; Wildberger, Norman J. 2

1 Institut de Mathématiques de Bourgogne UMR CNRS 5584 Université de Bourgogne U.F.R. Sciences et Techniques B.P. 47870 F-21078 Dijon Cedex France
2 School of Mathematics University of New South Wales Sydney 2052 Australia
@article{AMBP_2006__13_2_381_0,
     author = {Arnal, Didier and Bel Baraka, Nadia and Wildberger, Norman J.},
     title = {Diamond representations of $\mathfrak{sl}(n)$},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {381--429},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {2},
     year = {2006},
     doi = {10.5802/ambp.222},
     zbl = {1120.17005},
     mrnumber = {2275452},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.222/}
}
TY  - JOUR
AU  - Arnal, Didier
AU  - Bel Baraka, Nadia
AU  - Wildberger, Norman J.
TI  - Diamond representations of $\mathfrak{sl}(n)$
JO  - Annales mathématiques Blaise Pascal
PY  - 2006
SP  - 381
EP  - 429
VL  - 13
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.222/
DO  - 10.5802/ambp.222
LA  - en
ID  - AMBP_2006__13_2_381_0
ER  - 
%0 Journal Article
%A Arnal, Didier
%A Bel Baraka, Nadia
%A Wildberger, Norman J.
%T Diamond representations of $\mathfrak{sl}(n)$
%J Annales mathématiques Blaise Pascal
%D 2006
%P 381-429
%V 13
%N 2
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.222/
%R 10.5802/ambp.222
%G en
%F AMBP_2006__13_2_381_0
Arnal, Didier; Bel Baraka, Nadia; Wildberger, Norman J. Diamond representations of $\mathfrak{sl}(n)$. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 381-429. doi : 10.5802/ambp.222. http://archive.numdam.org/articles/10.5802/ambp.222/

[1] Cox, D.; Little, J.; O’shea, D. Ideals, varieties, and algorithms, Springer-Verlag, New York, 1996 | Zbl

[2] Fulton, W.; Harris, J. Representation theory, Springer-Verlag, New York, 1991 | MR | Zbl

[3] Kashiwara, M. Bases cristallines des groupes quantiques, Soc. Math. France, Paris, 2002 | MR | Zbl

[4] Lancaster, G.; Towber, J. Representation-functors and flag-algebras for the classical groups, J. Algebra, Volume 59 (1979) | DOI | MR | Zbl

[5] Varadarajan, V.S. Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Berlin, 1984 | MR | Zbl

[6] Wildberger, N. Quarks, diamonds and representation of 𝔰𝔩(3) (2005) (Submitted)

Cité par Sources :