Etant donnés () des -modules non triviaux de dimensions respectives (avec ) et un -homomorphisme, nous montrons que l’hyperdéterminant de est nul sauf si les modules sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.
Let () be non-trivial -modules with dimensions (such that ) and an -homomorphism. We show that the hyperdeterminant of is null except if the modules are irreducibles and the homomorphism is the multiplication of homogeneous polynomials with two variables.
Mot clés : Hyperdéterminant, fibrés de Steiner, $SL_{2}$ modules
Keywords: Hyperdeterminant, Steinerbundles, $SL_{2}$ modules
@article{AMBP_2008__15_1_81_0, author = {Vall\`es, Jean}, title = {Hyperd\'eterminant d{\textquoteright}un $SL_{2}$-homomorphisme}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {81--86}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {1}, year = {2008}, doi = {10.5802/ambp.240}, zbl = {1141.14030}, mrnumber = {2418014}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/ambp.240/} }
TY - JOUR AU - Vallès, Jean TI - Hyperdéterminant d’un $SL_{2}$-homomorphisme JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 81 EP - 86 VL - 15 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.240/ DO - 10.5802/ambp.240 LA - fr ID - AMBP_2008__15_1_81_0 ER -
Vallès, Jean. Hyperdéterminant d’un $SL_{2}$-homomorphisme. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 81-86. doi : 10.5802/ambp.240. http://archive.numdam.org/articles/10.5802/ambp.240/
[1] Unstable hyperplanes for Steiner bundles and multidimensional matrices, Advances in Geometry, Volume 1 (2001) no. 2, pp. 165-192 | DOI | MR | Zbl
[2] On the theory of linear transformations, Cambridge Math. J. (1845) no. 4, pp. 193-209
[3] Stabilizers for nondegenerate matrices of boundary format and Steiner bundles, Rev.Mat.Complut., Volume 17 (2004), pp. 459-469 | MR | Zbl
[4] Arrangement of hyperplanes and vector bundles on , Duke Math. J. (1993) no. 71, pp. 633-664 | DOI | MR | Zbl
[5] Discriminants, resultants, and multidimensional determinants, Mathematics : Theory & Applications, Birkhäuser, 1994 | MR | Zbl
[6] Vector bundles on the projective plane, Proc. London Math. Soc., Volume 11 (1961), pp. 623-640 | DOI | MR | Zbl
Cité par Sources :