We give a family of -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
Mots clés : class number, Fibonacci number, polynomial
@article{AMBP_2009__16_1_113_0, author = {Kishi, Yasuhiro}, title = {On $D_5$-polynomials with integer coefficients}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {113--125}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {1}, year = {2009}, doi = {10.5802/ambp.258}, zbl = {1173.11059}, mrnumber = {2514531}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.258/} }
TY - JOUR AU - Kishi, Yasuhiro TI - On $D_5$-polynomials with integer coefficients JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 113 EP - 125 VL - 16 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.258/ DO - 10.5802/ambp.258 LA - en ID - AMBP_2009__16_1_113_0 ER -
%0 Journal Article %A Kishi, Yasuhiro %T On $D_5$-polynomials with integer coefficients %J Annales mathématiques Blaise Pascal %D 2009 %P 113-125 %V 16 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.258/ %R 10.5802/ambp.258 %G en %F AMBP_2009__16_1_113_0
Kishi, Yasuhiro. On $D_5$-polynomials with integer coefficients. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 1, pp. 113-125. doi : 10.5802/ambp.258. http://archive.numdam.org/articles/10.5802/ambp.258/
[1] On the divisibility of the class number of quadratic fields, Pacific J. Math., Volume 5 (1955), pp. 321-324 | MR | Zbl
[2] Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math., Volume 120 (2006) no. 2, pp. 211-215 | DOI | MR | Zbl
[3] Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg, Volume 73 (2003), pp. 281-288 | DOI | MR | Zbl
[4] On dihedral extensions and Frobenius extensions, Galois theory and modular forms (Dev. Math.), Volume 11, Kluwer Acad. Publ., Boston, MA, 2004, pp. 195-220 | MR | Zbl
[5] Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math., Volume 343 (1983), pp. 23-35 | DOI | MR | Zbl
[6] Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg, Volume 1 (1922), pp. 140-150 | DOI
[7] A microcosm of Fibonacci numbers (Japanese), Nippon Hyoronsha Co., Tokyo, 2002
[8] On the class number of relative quadratic fields, Math. Comp., Volume 32 (1978) no. 144, pp. 1261-1270 | DOI | MR | Zbl
[9] The new book of prime number records, Springer-Verlag, New York, 1996 | MR | Zbl
[10] On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci., Volume 74 (1998) no. 7, pp. 120-123 | DOI | MR | Zbl
[11] Real quadratic fields with class numbers divisible by , J. Number Theory, Volume 5 (1973), pp. 237-241 | DOI | MR | Zbl
[12] On unramified Galois extensions of quadratic number fields, Osaka J. Math., Volume 7 (1970), pp. 57-76 | MR | Zbl
Cité par Sources :