Nous utilisons le calcul de Malliavin pour montrer la convergence dans de la variation quadratique à poids du mouvement brownien bifractionnaire (biFBM) d’indices et lorsque et .
We prove, by means of Malliavin calculus, the convergence in of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters and , when and .
Keywords: Bi-fractional Brownian motion, Weighted quadratic variations, Malliavan calculus.
Mot clés : Bi-fractional Brownian motion, Weighted quadratic variations, Malliavan calculus.
@article{AMBP_2010__17_1_165_0, author = {Belfadli, Rachid}, title = {Asymptotic behavior of weighted quadratic variation of bi-fractional {Brownian} motion}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {165--181}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {1}, year = {2010}, doi = {10.5802/ambp.281}, zbl = {1196.60066}, mrnumber = {2674657}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.281/} }
TY - JOUR AU - Belfadli, Rachid TI - Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 165 EP - 181 VL - 17 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.281/ DO - 10.5802/ambp.281 LA - en ID - AMBP_2010__17_1_165_0 ER -
%0 Journal Article %A Belfadli, Rachid %T Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion %J Annales mathématiques Blaise Pascal %D 2010 %P 165-181 %V 17 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.281/ %R 10.5802/ambp.281 %G en %F AMBP_2010__17_1_165_0
Belfadli, Rachid. Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 165-181. doi : 10.5802/ambp.281. http://archive.numdam.org/articles/10.5802/ambp.281/
[1] Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal., Volume 13 (3) (1938), pp. 425-441 | MR | Zbl
[2] Milstein’s type schemes for fractional SDEs, Ann. Inst. Henri Poincaré Probab. Stat., Volume 45 (2009) no. 4, pp. 1085-1098 | DOI | Numdam | MR
[3] An example of infnite dimensional quasi-helix, Contemporary Mathematics, Amer. Math. Soc., Volume 336 (2003), pp. 195-201 | MR | Zbl
[4] Exact rates of convergence of some approximations schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., Volume 20(4) (2008), pp. 871-899 | MR | Zbl
[5] Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, Ann. Probab., Volume 36(6) (2008), pp. 2159-2175 | DOI | MR | Zbl
[6] Central and non central limit theorems for weighted power variations of fractional brownian motion (2008) (Ann. Inst. Henri Poincaré, Probab. Stat. to appear)
[7] Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case , Ann. Probab., Volume 37 (2009) no. 6, pp. 2200-2230 | DOI | MR
[8] The Malliavin calculus and related topics, Springer Verlag, 2 nd edition, Berlin, 2006 | MR | Zbl
[9] On the bifractional Brownian motion, Stochastic Process. Appl., Volume 5 (2006), pp. 830-856 | DOI | MR | Zbl
[10] Stable non-Gaussian Random Processes. Stochastic models with infinite variance, Chapman & Hall, New York, 1994 | MR | Zbl
[11] Sample Path Properties of Bifractional Brownian Motion, Bernoulli, Volume 13 (4) (2007), pp. 1023-1052 | DOI | MR | Zbl
Cité par Sources :