En théorie de Nevanlinna ultramétrique, le second théorème fondamental de Nevanlinna pour des petites fonctions a seulement été établi pour trois petites fonctions. Dans cet article, on montre un second théorème fondamental pour petites fonctions d’un certain type quand la caractéristique résiduelle du corps est zero.
In ultrametric Nevanlinna theory, the Nevanlinna’s second main theorem for small functions has only been proved in the case of at most three small functions. In this paper, we prove a second main theorem for small functions of a special type when the residue characteristic of the field is zero.
Keywords: Ultrametric Nevanlinna theory, Second main theorem
Mot clés : Théorie de Nevanlinna ultramétrique
@article{AMBP_2010__17_2_425_0, author = {Jurvanen, Henna}, title = {An ultrametric {Nevanlinna{\textquoteright}s} second main theorem for small functions of a special type}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {425--431}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {2}, year = {2010}, doi = {10.5802/ambp.291}, zbl = {1206.30062}, mrnumber = {2778912}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.291/} }
TY - JOUR AU - Jurvanen, Henna TI - An ultrametric Nevanlinna’s second main theorem for small functions of a special type JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 425 EP - 431 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.291/ DO - 10.5802/ambp.291 LA - en ID - AMBP_2010__17_2_425_0 ER -
%0 Journal Article %A Jurvanen, Henna %T An ultrametric Nevanlinna’s second main theorem for small functions of a special type %J Annales mathématiques Blaise Pascal %D 2010 %P 425-431 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.291/ %R 10.5802/ambp.291 %G en %F AMBP_2010__17_2_425_0
Jurvanen, Henna. An ultrametric Nevanlinna’s second main theorem for small functions of a special type. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 425-431. doi : 10.5802/ambp.291. http://archive.numdam.org/articles/10.5802/ambp.291/
[1] Théorie de Nevanlinna p-adique, Manuscripta Math., Volume 67 (1990), pp. 251-269 | DOI | EuDML | MR | Zbl
[2] An improvement of the p-adic Nevanlinna theory and application to meromorphic functions, Lecture Notes in Pure and Appl. Math., Volume 207 (1999), pp. 29-38 | MR | Zbl
[3] Applications of the p-adic Nevanlinna Theory, Lecture Notes in Pure and Appl. Math., Volume 222 (2001), pp. 49-61 | MR | Zbl
[4] Analytic Elements in p-adic Analysis,, World Scientific, Singapore, 1995 | MR | Zbl
[5] p-adic value distribution, Some topics on value distribution and differentiability in complex and p-adic analysis, Science Press, Beijing, 2008
[6] The second main theorem for small functions and related problems, Acta Math., Volume 192 (2004), pp. 225-294 | DOI | MR | Zbl
Cité par Sources :