Ce travail présente une approche en direction d’une théorie des représentations des groupes de tresses . Nous nous concentrons sur les représentations de dimensions finie sur le corps des séries de Laurent qui peuvent être obtenues à partir des représentations des tresses infinitésimales en utilisant des associateurs de Drinfeld. Nous établissons un dictionnaire entre les propriétés de théorie des représentations de ces deux structures, ainsi que des outils pour décrire les représentations ainsi obtenues. Nous expliquons l’apparition fréquente de structures unitaires préservées par les représentations classiques. Nous introduisons de nouveaux objets (variétés d’extensions tressées, quotients infinitésimaux) qui sont utiles dans ce cadre, et nous analysons plusieurs de leurs propriétés. Enfin, nous passons en revue les représentations les plus classiques des groupes de tresses, montrons comment elles peuvent être obtenues par nos méthodes et comment ce cadre enrichit la compréhension que l’on en a.
This work presents an approach towards the representation theory of the braid groups . We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures on classical representations. We introduce new objects — varieties of braided extensions, infinitesimal quotients — which are useful in this setting, and analyse several of their properties. Finally, we review the most classical representations of the braid groups, show how they can be obtained by our methods and how this setting enriches our understanding of them.
Mots clés : Linear representations, Braid groups
@article{AMBP_2013__20_2_193_0, author = {Marin, Ivan}, title = {On the representation theory of braid groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {193--260}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {20}, number = {2}, year = {2013}, doi = {10.5802/ambp.326}, zbl = {06251800}, mrnumber = {3138029}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.326/} }
TY - JOUR AU - Marin, Ivan TI - On the representation theory of braid groups JO - Annales mathématiques Blaise Pascal PY - 2013 SP - 193 EP - 260 VL - 20 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.326/ DO - 10.5802/ambp.326 LA - en ID - AMBP_2013__20_2_193_0 ER -
Marin, Ivan. On the representation theory of braid groups. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 193-260. doi : 10.5802/ambp.326. http://archive.numdam.org/articles/10.5802/ambp.326/
[1] Theorie der Zöpfe, Abhandlungen Hamburg, Volume 4 (1925), pp. 47-72 | DOI | JFM | MR
[2] On the Solutions of Analytic Equations, Invent. Math., Volume 5 (1968), pp. 277-291 | DOI | EuDML | MR | Zbl
[3] A propos d’un lemme de Ribet, Rend. Semin. Mat. Univ. Padova, Volume 109 (2003), pp. 45-62 | EuDML | Numdam | MR | Zbl
[4] Représentations sur un anneau de valuation discrète complet, Math. Ann., Volume 334 (2006), pp. 465-488 | DOI | MR | Zbl
[5] Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press and University of Tokyo Press, Princeton, Tokyo, 1975 | MR | Zbl
[6] Zyklotomische Heckealgebren, Astérisque, Volume 212 (1993), pp. 119-189 | MR | Zbl
[7] Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., Volume 500 (1998), pp. 127-190 | MR | Zbl
[8] Théorie des groupes de Lie, vol. 2-3, Hermann, Paris, 1961 | Zbl
[9] On injective homomorphisms for pure braid groups, and associated Lie algebras, J. Algebra, Volume 298 (2006), pp. 363-370 | DOI | MR | Zbl
[10] Relations among the squares of the generators of the braid group, Invent. Math., Volume 117 (1994), pp. 525-529 | DOI | MR | Zbl
[11] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003), pp. 339-352 | DOI | MR | Zbl
[12] On quasitriangular quasi-Hopf algebras and a group closely connected with , Leningrad Math. J., Volume 2 (1991), pp. 829-860 | MR | Zbl
[13] Commutative algebra with a view toward algebraic geometry, Springer-Verlag, Heidelberg, 1995 | MR | Zbl
[14] Braid group representations of low degree, Proc. London Math. Soc., Volume 73 (1996), pp. 279-322 | DOI | MR | Zbl
[15] Série de Poincaré-Koszul associée aux groupes de tresses pures, Inven. Math., Volume 82 (19!5), pp. 57-76 | MR | Zbl
[16] Linear representations of braid groups and classical Yang-Baxter equations, Contemp. Math., Volume 78 (1988), pp. 339-363 | DOI | MR | Zbl
[17] The universal Vassiliev-Kontsevitch invariant for framed oriented links, Compositio Math., Volume 102 (1996), pp. 41-64 | Numdam | MR | Zbl
[18] Constructing representations of the braid groups, Comm. in analysis and geometry, Volume 2 (1994), pp. 217-238 | MR | Zbl
[19] On KZ-systems which are irreducible under the action of the symmetric group, C. R. Acad. Sci. Paris Sér. I, Volume 333 (2001), pp. 517-522 | DOI | MR | Zbl
[20] Représentations linéaires des tresses infinitésimales (2001) (Thèse de l’université Paris XI-Orsay)
[21] Caractérisations de la représentation de Burau, Expo. Math., Volume 21 (2003), pp. 263-278 | DOI | MR | Zbl
[22] Infinitesimal Hecke Algebras, Comptes Rendus Mathématiques Série I, Volume 337 (2003), pp. 297-302 | DOI | MR | Zbl
[23] On the representation theory of braid groups, Preprint Université d’Evry (2003)
[24] Quotients infinitésimaux du groupe de tresses, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 1323-1364 | DOI | Numdam | MR | Zbl
[25] Irréductibilité générique des produits tensoriels de monodromies, Bull. Soc. Math. Fr., Volume 132 (2004), pp. 201-232 | Numdam | MR | Zbl
[26] Caractères de rigidité du groupe de Grothendieck-Teichmüller, Compositio Math., Volume 142 (2006), pp. 657-678 | DOI | MR | Zbl
[27] Monodromie algébrique des groupes d’Artin diédraux, J. Algebra, Volume 303 (2006), pp. 97-132 | DOI | MR | Zbl
[28] L’algèbre de Lie des transpositions, J. Algebra, Volume 310 (2007), pp. 742-774 | DOI | MR | Zbl
[29] Sur les représentations de Krammer génériques, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 1883-1925 | DOI | Numdam | MR | Zbl
[30] Braids inside the Birman-Wenzl-Murakami algebra, Algebraic Geometric Topology, Volume 10 (2010), pp. 1865-1886 | DOI | MR | Zbl
[31] The cubic Hecke algebra on at most 5 strands, J. Pure Applied Algebra, Volume 216 (2012), pp. 2754-2782 | DOI | MR | Zbl
[32] A modular construction of unramified extensions of , Invent. Math., Volume 34 (1976), pp. 151-162 | DOI | MR | Zbl
[33] Finite unitary reflection groups, Canad. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[34] The Burau Representation is Unitary, Proc. Am. Math. Soc., Volume 90 (1984), pp. 199-202 | DOI | MR | Zbl
[35] On irreducible representations of braid groups (1999) (Ph.D. thesis, University of Pennsylvania) | MR
[36] Dimension representations of the braid groups on strings, J. Algebra, Volume 243 (2001), pp. 518-538 | DOI | MR | Zbl
[37] Normalisateurs de tores I : Groupes de Coxeter étendus, J. Algebra, Volume 4 (1966), pp. 96-116 | DOI | MR | Zbl
[38] Complements of discriminants of smooth maps : topology and applications, Translation of mathematical monographs, Volume 98 (1992) | MR | Zbl
Cité par Sources :