Measured quantum groupoids associated with matched pairs of locally compact groupoids
Annales mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 81-133.

Generalizing the notion of matched pair of groups, we define and study matched pairs of locally compact groupoids endowed with Haar systems, in order to give new examples of measured quantum groupoids.

En généralisant la notion de couple assorti de groupes, nous définissons et étudions les paires assorties de groupoides localement compacts munis de systèmes de Haar, afin d’obtenir de nouveaux exemples de groupoïdes quantiques mesurés.

DOI: 10.5802/ambp.344
Classification: 17B37,  22D25,  22A22
Keywords: Von Neumann algebras, measured quantum groupoids, matched pairs of groupoids
Vallin, Jean-Michel 1

1 Administrative address: MAPMO UMR 6628 CNRS / Université d’Orléans, France Alternative address: IMJ - Paris Rive Gauche Bâtiment Sophie Germain - pièce 709 Case 7012 5 rue Thomas Mann F-75205 PARIS Cedex 13
@article{AMBP_2014__21_2_81_0,
     author = {Vallin, Jean-Michel},
     title = {Measured quantum groupoids associated with matched pairs of locally compact groupoids},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {81--133},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {21},
     number = {2},
     year = {2014},
     doi = {10.5802/ambp.344},
     mrnumber = {3327862},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.344/}
}
TY  - JOUR
AU  - Vallin, Jean-Michel
TI  - Measured quantum groupoids associated with matched pairs of locally compact groupoids
JO  - Annales mathématiques Blaise Pascal
PY  - 2014
DA  - 2014///
SP  - 81
EP  - 133
VL  - 21
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.344/
UR  - https://www.ams.org/mathscinet-getitem?mr=3327862
UR  - https://doi.org/10.5802/ambp.344
DO  - 10.5802/ambp.344
LA  - en
ID  - AMBP_2014__21_2_81_0
ER  - 
%0 Journal Article
%A Vallin, Jean-Michel
%T Measured quantum groupoids associated with matched pairs of locally compact groupoids
%J Annales mathématiques Blaise Pascal
%D 2014
%P 81-133
%V 21
%N 2
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.344
%R 10.5802/ambp.344
%G en
%F AMBP_2014__21_2_81_0
Vallin, Jean-Michel. Measured quantum groupoids associated with matched pairs of locally compact groupoids. Annales mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 81-133. doi : 10.5802/ambp.344. http://archive.numdam.org/articles/10.5802/ambp.344/

[1] Andruskiewitsch, Nicolás; Natale, Sonia Tensor categories attached to double groupoids, Adv. Math., Volume 200 (2006) no. 2, pp. 539-583 | DOI | MR | Zbl

[2] Baaj, Saad; Skandalis, Georges Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR | Zbl

[3] Baaj, Saad; Skandalis, Georges; Vaes, Stefaan Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | DOI | MR | Zbl

[4] Baaj, Saad; Skandalis, Georges; Vaes, Stefaan Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, p. 1497-1524 (electronic) | DOI | MR | Zbl

[5] Connes, A. On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | DOI | MR | Zbl

[6] Enock, Michel Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, pp. ii+150 pp. (2009) | Numdam | MR | Zbl

[7] Enock, Michel The unitary implementation of a measured quantum groupoid action, Ann. Math. Blaise Pascal, Volume 17 (2010) no. 2, pp. 233-302 | DOI | Numdam | MR | Zbl

[8] Enock, Michel Measured quantum groupoids with a central basis, J. Operator Theory, Volume 66 (2011) no. 1, pp. 3-58 | MR | Zbl

[9] Enock, Michel; Schwartz, Jean-Marie Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992, pp. x+257 | MR | Zbl

[10] Enock, Michel; Vallin, Jean-Michel Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | DOI | MR | Zbl

[11] Godbillon, Claude Éléments de topologie algébrique, Hermann, Paris, 1971, pp. 249 | MR | Zbl

[12] et J. Renault., C. Anantharaman-Delaroche Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], 36, L’Enseignement Mathématique, Geneva, 2000, pp. 196 | MR | Zbl

[13] Kustermans, Johan; Vaes, Stefaan Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | DOI | MR | Zbl

[14] Lesieur, F. tel.ccsd.cnrs.fr/documents/archives0/00/00/55/05 (thèse, Université d’Orléans)

[15] Lesieur, Franck Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, pp. iv+158 pp. (2008) | Numdam | MR | Zbl

[16] Ramsey, A Topologies on measured groupoids, Journal of Functional Analysis (1982) no. 47, pp. 314-343 | DOI | MR | Zbl

[17] Renault, Jean A groupoid approach to C * -algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980, pp. ii+160 | MR | Zbl

[18] Sauvageot, Jean-Luc Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR | Zbl

[19] Strătilă, Şerban Modular theory in operator algebras, Editura Academiei-Abacus Press Wells England, 1981 | MR | Zbl

[20] Vaes, Stefaan The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | DOI | MR | Zbl

[21] Vaes, Stefaan Groupes quantiques localement compacts, actions et extensions (2004) (Habilitation à Diriger des Recherches, Université Paris 7 Denis Diderot)

[22] Vaes, Stefaan; Vainerman, Leonid Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | DOI | MR | Zbl

[23] Vallin, Jean-Michel Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR | Zbl

[24] Vallin, Jean-Michel Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR | Zbl

[25] Vallin, Jean-Michel Actions and coactions of finite quantum groupoids on von Neumann algebras, extensions of the matched pair procedure, J. Algebra, Volume 314 (2007) no. 2, pp. 789-816 | DOI | MR | Zbl

[26] Vallin, Jean-Michel Relative matched pairs of finite groups from depth two inclusions of von Neumann algebras to quantum groupoids, J. Funct. Anal., Volume 254 (2008) no. 8, pp. 2040-2068 | DOI | MR | Zbl

[27] Woronowicz, S. L. From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | DOI | MR | Zbl

Cited by Sources: