Nous donnons une estimation polynomiale pour la fonction de densité spectrale d’une matrice sur l’algèbre complexe du groupe . Ce résultat donne une borne inférieure explicite à l’invariant de Novikov-Shubin associé à la matrice, montrant en particulier que l’invariant de Novikov-Shubin est strictement positif.
We give a polynomial bound on the spectral density function of a matrix over the complex group ring of . It yields an explicit lower bound on the Novikov-Shubin invariant associated to this matrix showing in particular that the Novikov-Shubin invariant is larger than zero.
Keywords: spectral density function, Novikov-Shubin invariants
Mot clés : Invariants de Novikov-Shubin, fonction de densité spectrale
@article{AMBP_2015__22_1_73_0, author = {L\"uck, Wolfgang}, title = {Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {73--88}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {22}, number = {1}, year = {2015}, doi = {10.5802/ambp.346}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.346/} }
TY - JOUR AU - Lück, Wolfgang TI - Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$ JO - Annales mathématiques Blaise Pascal PY - 2015 SP - 73 EP - 88 VL - 22 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.346/ DO - 10.5802/ambp.346 LA - en ID - AMBP_2015__22_1_73_0 ER -
%0 Journal Article %A Lück, Wolfgang %T Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$ %J Annales mathématiques Blaise Pascal %D 2015 %P 73-88 %V 22 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.346/ %R 10.5802/ambp.346 %G en %F AMBP_2015__22_1_73_0
Lück, Wolfgang. Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$. Annales mathématiques Blaise Pascal, Tome 22 (2015) no. 1, pp. 73-88. doi : 10.5802/ambp.346. http://archive.numdam.org/articles/10.5802/ambp.346/
[1] Group ring elements with large spectral density (2014) (http://arxiv.org/abs/1409.3212)
[2] Random Walks on Lamplighters via random Schrödinger operators (2013) (Preprint)
[3] A problem of Boyd concerning geometric means of polynomials, J. Number Theory, Volume 16 (1983) no. 3, pp. 356-362 | DOI | MR | Zbl
[4] Heat kernels on covering spaces and topological invariants, J. Differential Geom., Volume 35 (1992) no. 2, pp. 471-510 | MR | Zbl
[5] Delocalized -invariants, J. Funct. Anal., Volume 169 (1999) no. 1, pp. 1-31 | DOI | MR | Zbl
[6] -Topological invariants of -manifolds, Invent. Math., Volume 120 (1995) no. 1, pp. 15-60 | DOI | MR | Zbl
[7] -Invariants: Theory and Applications to Geometry and -Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 44, Springer-Verlag, Berlin, 2002, pp. xvi+595 | MR | Zbl
[8] Twisting -invariants with finite-dimensional representations (2015) (in preparation)
[9] Algebraic -theory of von Neumann algebras, K-Theory, Volume 7 (1993) no. 6, pp. 517-536 | DOI | MR | Zbl
[10] Morse inequalities and von Neumann -factors, Dokl. Akad. Nauk SSSR, Volume 289 (1986) no. 2, pp. 289-292 | MR | Zbl
[11] Morse inequalities and von Neumann invariants of non-simply connected manifolds, Uspekhi. Matem. Nauk, Volume 41 (1986) no. 5, pp. 222-223 (in Russian)
[12] Power series over the group ring of a free group and applications to Novikov-Shubin invariants, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 449-468 | MR | Zbl
Cité par Sources :