Obstruction theory for algebras over an operad
Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 75-107.

The goal of this paper is to set up an obstruction theory in the context of algebras over an operad and in the framework of differential graded modules over a field. Precisely, the problem we consider is the following: Suppose given two algebras A and B over an operad P and an algebra morphism from H * A to H * B. Can we realize this morphism as a morphism of P-algebras from A to B in the homotopy category? Also, if the realization exists, is it unique in the homotopy category?

We identify obstruction cocycles for this problem, and notice that they live in the first two groups of operadic Γ-cohomology.

Publié le :
DOI : 10.5802/ambp.355
Classification : 55S35, 18D50, 55P48
Mots clés : Obstruction theory, algebras over operads
Hoffbeck, Eric 1

1 Université Paris 13, Sorbonne Paris Cité LAGA, CNRS, UMR 7539 99 avenue Jean-Baptiste Clément 93430 Villetaneuse, France
@article{AMBP_2016__23_1_75_0,
     author = {Hoffbeck, Eric},
     title = {Obstruction theory for algebras over an operad},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {75--107},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {1},
     year = {2016},
     doi = {10.5802/ambp.355},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.355/}
}
TY  - JOUR
AU  - Hoffbeck, Eric
TI  - Obstruction theory for algebras over an operad
JO  - Annales mathématiques Blaise Pascal
PY  - 2016
SP  - 75
EP  - 107
VL  - 23
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.355/
DO  - 10.5802/ambp.355
LA  - en
ID  - AMBP_2016__23_1_75_0
ER  - 
%0 Journal Article
%A Hoffbeck, Eric
%T Obstruction theory for algebras over an operad
%J Annales mathématiques Blaise Pascal
%D 2016
%P 75-107
%V 23
%N 1
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.355/
%R 10.5802/ambp.355
%G en
%F AMBP_2016__23_1_75_0
Hoffbeck, Eric. Obstruction theory for algebras over an operad. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 75-107. doi : 10.5802/ambp.355. http://archive.numdam.org/articles/10.5802/ambp.355/

[1] Berger, Clemens; Fresse, Benoit Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc., Volume 137 (2004) no. 1, pp. 135-174 | DOI

[2] Berger, Clemens; Moerdijk, Ieke Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 805-831 | DOI

[3] Berger, Clemens; Moerdijk, Ieke The Boardman-Vogt resolution of operads in monoidal model categories, Topology, Volume 45 (2006) no. 5, pp. 807-849 | DOI

[4] Blanc, D.; Dwyer, W. G.; Goerss, P. G. The realization space of a Π-algebra: a moduli problem in algebraic topology, Topology, Volume 43 (2004) no. 4, pp. 857-892 | DOI

[5] Dwyer, W. G.; Spaliński, J. Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126 | DOI

[6] Fresse, Benoit Modules over operads and functors, Lecture Notes in Mathematics, 1967, Springer-Verlag, Berlin, 2009, x+308 pages | DOI

[7] Fresse, Benoit Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras over operads, Alpine perspectives on algebraic topology (Contemp. Math.), Volume 504, Amer. Math. Soc., Providence, RI, 2009, pp. 125-188 | DOI

[8] Fresse, Benoit Props in model categories and homotopy invariance of structures, Georgian Math. J., Volume 17 (2010) no. 1, pp. 79-160

[9] Getzler, Ezra; Jones, J. D. S. Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (http://arxiv.org/abs/hep-th/9403055)

[10] Ginzburg, Victor; Kapranov, Mikhail Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272 | DOI

[11] Goerss, P. G.; Hopkins, M. J. Moduli spaces of commutative ring spectra, Structured ring spectra (London Math. Soc. Lecture Note Ser.), Volume 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151-200 | DOI

[12] Halperin, Stephen; Stasheff, James Obstructions to homotopy equivalences, Adv. in Math., Volume 32 (1979) no. 3, pp. 233-279 | DOI

[13] Hinich, Vladimir Homological algebra of homotopy algebras, Comm. Algebra, Volume 25 (1997) no. 10, pp. 3291-3323 | DOI

[14] Hirschhorn, Philip S. Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, Providence, RI, 2003, xvi+457 pages

[15] Hoffbeck, Eric Γ-homology of algebras over an operad, Algebr. Geom. Topol., Volume 10 (2010) no. 3, pp. 1781-1806 | DOI

[16] Hovey, Mark Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, Providence, RI, 1999, xii+209 pages

[17] Kadeišvili, T. V. On the theory of homology of fiber spaces, Uspekhi Mat. Nauk, Volume 35 (1980) no. 3(213), pp. 183-188 International Topology Conference (Moscow State Univ., Moscow, 1979)

[18] Livernet, Muriel On a plus-construction for algebras over an operad, K-Theory, Volume 18 (1999) no. 4, pp. 317-337 | DOI

[19] Markl, Martin; Shnider, Steve Associahedra, cellular W-construction and products of A -algebras, Trans. Amer. Math. Soc., Volume 358 (2006) no. 6, p. 2353-2372 (electronic) | DOI

[20] Robinson, Alan Gamma homology, Lie representations and E multiplications, Invent. Math., Volume 152 (2003) no. 2, pp. 331-348 | DOI

[21] Robinson, Alan; Whitehouse, Sarah Operads and Γ-homology of commutative rings, Math. Proc. Cambridge Philos. Soc., Volume 132 (2002) no. 2, pp. 197-234 | DOI

Cité par Sources :