Nous donnons une technique simple pour calculer les limites Berry–Esséen pour la variation quadratique du mouvement Brownien subfractional (subfBm). Notre approche a deux ingrédients principaux : (
We give a simple technic to derive the Berry–Esséen bounds for the quadratic variation of the subfractional Brownian motion (subfBm). Our approach has two main ingredients: (
@article{AMBP_2016__23_2_141_0, author = {Aazizi, Soufiane}, title = {A {Simple} {Proof} of {Berry{\textendash}Ess\'een} {Bounds} for the {Quadratic} {Variation} of the {Subfractional} {Brownian} {Motion}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {141--150}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {2}, year = {2016}, doi = {10.5802/ambp.358}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.358/} }
TY - JOUR AU - Aazizi, Soufiane TI - A Simple Proof of Berry–Esséen Bounds for the Quadratic Variation of the Subfractional Brownian Motion JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 141 EP - 150 VL - 23 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.358/ DO - 10.5802/ambp.358 LA - en ID - AMBP_2016__23_2_141_0 ER -
%0 Journal Article %A Aazizi, Soufiane %T A Simple Proof of Berry–Esséen Bounds for the Quadratic Variation of the Subfractional Brownian Motion %J Annales mathématiques Blaise Pascal %D 2016 %P 141-150 %V 23 %N 2 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.358/ %R 10.5802/ambp.358 %G en %F AMBP_2016__23_2_141_0
Aazizi, Soufiane. A Simple Proof of Berry–Esséen Bounds for the Quadratic Variation of the Subfractional Brownian Motion. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 141-150. doi : 10.5802/ambp.358. https://www.numdam.org/articles/10.5802/ambp.358/
[1] Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion, Electron. Commun. Probab., Volume 13 (2008), pp. 482-493 | DOI
[2] Lectures on Gaussian approximations with Malliavin calculus, Séminaire de Probabilités XLV (Lecture Notes in Mathematics), Volume 2078, Springer, 2013, pp. 3-89
[3] Central and non-central limit theorems for weighted power variations of fractional Brownian motion, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 46 (2010) no. 4, pp. 1055-1079 | DOI
[4] Stein’s method on Wiener chaos, Probab. Theory Relat. Fields, Volume 145 (2009) no. 1-2, pp. 75-118 | DOI
[5] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006, xiv+382 pages
[6] Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion, J. Math. Anal. Appl., Volume 375 (2011) no. 2, pp. 667-676 | DOI
Cité par Sources :