On établit des résultats d’annulation de la cohomologie
Vanishing results for reduced
Keywords: differential form, reduced
Mot clés : forme différentielle, cohomologie
@article{AMBP_2016__23_2_151_0, author = {Gol'dshtein, Vladimir and Kopylov, Yaroslav}, title = {Reduced $L_{q,p}${-Cohomology} of {Some} {Twisted} {Products}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {151--169}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {2}, year = {2016}, doi = {10.5802/ambp.359}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.359/} }
TY - JOUR AU - Golʼdshtein, Vladimir AU - Kopylov, Yaroslav TI - Reduced $L_{q,p}$-Cohomology of Some Twisted Products JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 151 EP - 169 VL - 23 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.359/ DO - 10.5802/ambp.359 LA - en ID - AMBP_2016__23_2_151_0 ER -
%0 Journal Article %A Golʼdshtein, Vladimir %A Kopylov, Yaroslav %T Reduced $L_{q,p}$-Cohomology of Some Twisted Products %J Annales mathématiques Blaise Pascal %D 2016 %P 151-169 %V 23 %N 2 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.359/ %R 10.5802/ambp.359 %G en %F AMBP_2016__23_2_151_0
Golʼdshtein, Vladimir; Kopylov, Yaroslav. Reduced $L_{q,p}$-Cohomology of Some Twisted Products. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 151-169. doi : 10.5802/ambp.359. https://www.numdam.org/articles/10.5802/ambp.359/
[1] Manifolds of negative curvature, Trans. Am. Math. Soc., Volume 145 (1969), pp. 1-49 | DOI
[2] Harmonic maps on generalized warped product manifolds, Bull. Math. Anal. Appl., Volume 4 (2012) no. 1, pp. 156-165
[3] Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comen. New Ser., Volume 81 (2012) no. 2, pp. 283-298
[4] Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981, iii+96 pages
[5] A class of almost contact metric manifolds and double-twisted products, Math. Sci. Appl. E-Notes, Volume 1 (2013) no. 1, pp. 36-57
[6] A curvature condition for a twisted product to be a warped product, Manuscr. Math., Volume 106 (2001) no. 2, pp. 213-217 | DOI
[7] Reduced
[8] Sobolev inequalities for differential forms and
[9] The Hölder–Poincaré duality for
[10] Conformal transformations in a twisted product space, Bull. Korean Math. Soc., Volume 42 (2005) no. 1, pp. 5-15 | DOI
[11]
[12] On normal solvability of the exterior differentiation on a warped cylinder, Sib. Math. J., Volume 34 (1993) no. 1, pp. 73-82 | DOI
[13] On normal solvability of the operator of exterior derivation on warped products, Sib. Math. J., Volume 37 (1996) no. 2, pp. 276-287 | DOI
[14] Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, Volume 48 (1993) no. 1, pp. 15-25 | DOI
Cité par Sources :