Reduced Lq,p-Cohomology of Some Twisted Products
[La cohomologie Lq,p réduite de quelques produits twistés]
Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 151-169.

On établit des résultats d’annulation de la cohomologie Lq,p réduite pour les produits twistés, une généralisation des produits tordus dans le cas de qp. Le résultats obtenus sont des généralisations de certains résultats par Gol'dshtein, Kuz'minov et Shvedov sur la cohomologie Lp des cylindres tordus. Une des observations principales est la trivialité de la cohomolgie en dimension “moyenne” pour une large classe de variétés.

Vanishing results for reduced Lq,p-cohomology are established in the case of twisted products, which are a generalization of warped products. Only the case qp is considered. This is an extension of some results by Gol'dshtein, Kuz'minov and Shvedov about the Lp-cohomology of warped cylinders. One of the main observations is the vanishing of the “middle-dimensional” cohomology for a large class of manifolds.

DOI : 10.5802/ambp.359
Classification : 58A10, 58A12
Keywords: differential form, reduced Lq,p-cohomology, twisted cylinder
Mot clés : forme différentielle, cohomologie Lq,p réduite, cylindre twisté
Golʼdshtein, Vladimir 1 ; Kopylov, Yaroslav 2, 3

1 Department of Mathematics Ben Gurion University of the Negev P.O.B. 653 Beer Sheva 84105, Israel
2 Sobolev Institute of Mathematics Pr. Akad. Koptyuga 4 630090, Novosibirsk, Russia
3 Novosibirsk State University ul. Pirogova 2 630090, Novosibirsk, Russia
@article{AMBP_2016__23_2_151_0,
     author = {Gol'dshtein, Vladimir and Kopylov, Yaroslav},
     title = {Reduced $L_{q,p}${-Cohomology} of {Some} {Twisted} {Products}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {151--169},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {2},
     year = {2016},
     doi = {10.5802/ambp.359},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ambp.359/}
}
TY  - JOUR
AU  - Golʼdshtein, Vladimir
AU  - Kopylov, Yaroslav
TI  - Reduced $L_{q,p}$-Cohomology of Some Twisted Products
JO  - Annales mathématiques Blaise Pascal
PY  - 2016
SP  - 151
EP  - 169
VL  - 23
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://www.numdam.org/articles/10.5802/ambp.359/
DO  - 10.5802/ambp.359
LA  - en
ID  - AMBP_2016__23_2_151_0
ER  - 
%0 Journal Article
%A Golʼdshtein, Vladimir
%A Kopylov, Yaroslav
%T Reduced $L_{q,p}$-Cohomology of Some Twisted Products
%J Annales mathématiques Blaise Pascal
%D 2016
%P 151-169
%V 23
%N 2
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.359/
%R 10.5802/ambp.359
%G en
%F AMBP_2016__23_2_151_0
Golʼdshtein, Vladimir; Kopylov, Yaroslav. Reduced $L_{q,p}$-Cohomology of Some Twisted Products. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 151-169. doi : 10.5802/ambp.359. https://www.numdam.org/articles/10.5802/ambp.359/

[1] Bishop, Richard L.; O’Neill, Barrett Manifolds of negative curvature, Trans. Am. Math. Soc., Volume 145 (1969), pp. 1-49 | DOI

[2] Boulal, A.; Djaa, Nour El Houda; Djaa, Mustapha; Ouakkas, Seddik Harmonic maps on generalized warped product manifolds, Bull. Math. Anal. Appl., Volume 4 (2012) no. 1, pp. 156-165

[3] Boulal, A.; Djaa, Nour El Houda; Zagane, A. Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comen. New Ser., Volume 81 (2012) no. 2, pp. 283-298

[4] Chen, Bang-yen Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981, iii+96 pages

[5] Falcitelli, Maria A class of almost contact metric manifolds and double-twisted products, Math. Sci. Appl. E-Notes, Volume 1 (2013) no. 1, pp. 36-57

[6] Fernández-López, Manuel; García-Río, Eduardo; Kupeli, Demir N.; Ünal, Bülent A curvature condition for a twisted product to be a warped product, Manuscr. Math., Volume 106 (2001) no. 2, pp. 213-217 | DOI

[7] Golʼdshtejn, Vladimir M.; Kuzʼminov, Vladimir I.; Shvedov, Igor A. Reduced Lp-cohomology of warped cylinders, Sib. Math. J., Volume 31 (1990) no. 5, pp. 716-727 | DOI

[8] Golʼdshtejn, Vladimir M.; Troyanov, Marc Sobolev inequalities for differential forms and Lq,p-cohomology, J. Geom. Anal., Volume 16 (2006) no. 4, pp. 597-632 | DOI

[9] Golʼdshtejn, Vladimir M.; Troyanov, Marc The Hölder–Poincaré duality for Lq,p-cohomology, Ann. Global Anal. Geom., Volume 41 (2012) no. 1, pp. 25-45 | DOI

[10] Kim, Byung Hak; Jung, Seoung Dal; Kang, Tae Ho; Pak, Hong Kyung Conformal transformations in a twisted product space, Bull. Korean Math. Soc., Volume 42 (2005) no. 1, pp. 5-15 | DOI

[11] Kopylov, Yaroslav Lp,q-cohomology and normal solvability, Arch. Math., Volume 89 (2007) no. 1, pp. 87-96 | DOI

[12] Kuzʼminov, Vladimir I.; Shvedov, Igor A. On normal solvability of the exterior differentiation on a warped cylinder, Sib. Math. J., Volume 34 (1993) no. 1, pp. 73-82 | DOI

[13] Kuzʼminov, Vladimir I.; Shvedov, Igor A. On normal solvability of the operator of exterior derivation on warped products, Sib. Math. J., Volume 37 (1996) no. 2, pp. 276-287 | DOI

[14] Ponge, Ralf; Reckziegel, Helmut Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, Volume 48 (1993) no. 1, pp. 15-25 | DOI

Cité par Sources :