On établit des résultats d’annulation de la cohomologie réduite pour les produits twistés, une généralisation des produits tordus dans le cas de . Le résultats obtenus sont des généralisations de certains résultats par Goldshtein, Kuzminov et Shvedov sur la cohomologie des cylindres tordus. Une des observations principales est la trivialité de la cohomolgie en dimension “moyenne” pour une large classe de variétés.
Vanishing results for reduced -cohomology are established in the case of twisted products, which are a generalization of warped products. Only the case is considered. This is an extension of some results by Goldshtein, Kuzminov and Shvedov about the -cohomology of warped cylinders. One of the main observations is the vanishing of the “middle-dimensional” cohomology for a large class of manifolds.
Keywords: differential form, reduced $L_{q,p}$-cohomology, twisted cylinder
Mot clés : forme différentielle, cohomologie $L_{q,p}$ réduite, cylindre twisté
@article{AMBP_2016__23_2_151_0, author = {Gol'dshtein, Vladimir and Kopylov, Yaroslav}, title = {Reduced $L_{q,p}${-Cohomology} of {Some} {Twisted} {Products}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {151--169}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {2}, year = {2016}, doi = {10.5802/ambp.359}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.359/} }
TY - JOUR AU - Golʼdshtein, Vladimir AU - Kopylov, Yaroslav TI - Reduced $L_{q,p}$-Cohomology of Some Twisted Products JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 151 EP - 169 VL - 23 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.359/ DO - 10.5802/ambp.359 LA - en ID - AMBP_2016__23_2_151_0 ER -
%0 Journal Article %A Golʼdshtein, Vladimir %A Kopylov, Yaroslav %T Reduced $L_{q,p}$-Cohomology of Some Twisted Products %J Annales mathématiques Blaise Pascal %D 2016 %P 151-169 %V 23 %N 2 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.359/ %R 10.5802/ambp.359 %G en %F AMBP_2016__23_2_151_0
Golʼdshtein, Vladimir; Kopylov, Yaroslav. Reduced $L_{q,p}$-Cohomology of Some Twisted Products. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 151-169. doi : 10.5802/ambp.359. http://archive.numdam.org/articles/10.5802/ambp.359/
[1] Manifolds of negative curvature, Trans. Am. Math. Soc., Volume 145 (1969), pp. 1-49 | DOI
[2] Harmonic maps on generalized warped product manifolds, Bull. Math. Anal. Appl., Volume 4 (2012) no. 1, pp. 156-165
[3] Generalized warped product manifolds and biharmonic maps, Acta Math. Univ. Comen. New Ser., Volume 81 (2012) no. 2, pp. 283-298
[4] Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981, iii+96 pages
[5] A class of almost contact metric manifolds and double-twisted products, Math. Sci. Appl. E-Notes, Volume 1 (2013) no. 1, pp. 36-57
[6] A curvature condition for a twisted product to be a warped product, Manuscr. Math., Volume 106 (2001) no. 2, pp. 213-217 | DOI
[7] Reduced -cohomology of warped cylinders, Sib. Math. J., Volume 31 (1990) no. 5, pp. 716-727 | DOI
[8] Sobolev inequalities for differential forms and -cohomology, J. Geom. Anal., Volume 16 (2006) no. 4, pp. 597-632 | DOI
[9] The Hölder–Poincaré duality for -cohomology, Ann. Global Anal. Geom., Volume 41 (2012) no. 1, pp. 25-45 | DOI
[10] Conformal transformations in a twisted product space, Bull. Korean Math. Soc., Volume 42 (2005) no. 1, pp. 5-15 | DOI
[11] -cohomology and normal solvability, Arch. Math., Volume 89 (2007) no. 1, pp. 87-96 | DOI
[12] On normal solvability of the exterior differentiation on a warped cylinder, Sib. Math. J., Volume 34 (1993) no. 1, pp. 73-82 | DOI
[13] On normal solvability of the operator of exterior derivation on warped products, Sib. Math. J., Volume 37 (1996) no. 2, pp. 276-287 | DOI
[14] Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, Volume 48 (1993) no. 1, pp. 15-25 | DOI
Cité par Sources :