On étudie la croissance des fonctions harmoniques sur les variétés riemanniennes complètes dont le diamètre des grandes sphères géodésiques croît sous linéairement. Il s’agit d’une généralisation de travaux de A. Kasue. Nous obtenons aussi un résultat de continuité pour la transformée de Riesz
We study the growth of harmonic functions on complete Riemannian manifolds where the extrinsic diameter of geodesic spheres is sublinear. It is an generalization of a result of A. Kasue. Our estimates also yields a result on the boundedness of the Riesz transform.
Mots clés : Inégalités de Poincaré, fonctions harmoniques, transformée de Riesz.
@article{AMBP_2016__23_2_249_0, author = {Carron, Gilles}, title = {Harmonic functions on {Manifolds} whose large spheres are small.}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {249--261}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {23}, number = {2}, year = {2016}, doi = {10.5802/ambp.362}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.362/} }
TY - JOUR AU - Carron, Gilles TI - Harmonic functions on Manifolds whose large spheres are small. JO - Annales mathématiques Blaise Pascal PY - 2016 SP - 249 EP - 261 VL - 23 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.362/ DO - 10.5802/ambp.362 LA - en ID - AMBP_2016__23_2_249_0 ER -
%0 Journal Article %A Carron, Gilles %T Harmonic functions on Manifolds whose large spheres are small. %J Annales mathématiques Blaise Pascal %D 2016 %P 249-261 %V 23 %N 2 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.362/ %R 10.5802/ambp.362 %G en %F AMBP_2016__23_2_249_0
Carron, Gilles. Harmonic functions on Manifolds whose large spheres are small.. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 249-261. doi : 10.5802/ambp.362. http://archive.numdam.org/articles/10.5802/ambp.362/
[1] Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 4 (2005) no. 3, pp. 531-555
[2] Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI (Lecture Notes in Math.), Volume 1247, Springer, Berlin, 1987, pp. 137-172 | DOI
[3] A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982) no. 2, pp. 213-230
[4] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., Volume 28 (1975) no. 3, pp. 333-354 | DOI
[5] Harmonic functions on manifolds, Ann. Math. (2), Volume 146 (1997) no. 3, pp. 725-747 | DOI
[6] Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., Volume 51 (1998) no. 2, pp. 113-138 | DOI
[7] Riesz transform on manifolds with quadratic curvature decay (2014) (https://arxiv.org/abs/1403.6278, to appear in Rev. Mat. Iberoam.)
[8] Stability results for Harnack inequalities, Ann. Inst. Fourier, Volume 55 (2005) no. 3, pp. 825-890 http://aif.cedram.org/item?id=AIF_2005__55_3_825_0 | DOI
[9] Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature. I, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.), Volume 1339, Springer, Berlin, 1988, pp. 158-181 | DOI
[10] Harmonic functions of polynomial growth on complete manifolds. II, J. Math. Soc. Japan, Volume 47 (1995) no. 1, pp. 37-65 | DOI
[11] Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett., Volume 2 (1995) no. 1, pp. 79-94 | DOI
[12] Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 2, pp. 275-290 | DOI
[13] Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth, Pacific J. Math., Volume 192 (2000) no. 1, pp. 183-189 | DOI
[14] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970, xiv+290 pages
Cité par Sources :