Harmonic functions on Manifolds whose large spheres are small.
Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 249-261.

On étudie la croissance des fonctions harmoniques sur les variétés riemanniennes complètes dont le diamètre des grandes sphères géodésiques croît sous linéairement. Il s’agit d’une généralisation de travaux de A. Kasue. Nous obtenons aussi un résultat de continuité pour la transformée de Riesz

We study the growth of harmonic functions on complete Riemannian manifolds where the extrinsic diameter of geodesic spheres is sublinear. It is an generalization of a result of A. Kasue. Our estimates also yields a result on the boundedness of the Riesz transform.

DOI : 10.5802/ambp.362
Keywords: Poincaré inequality, harmonic function, Riesz transform
Mots clés : Inégalités de Poincaré, fonctions harmoniques, transformée de Riesz.
Carron, Gilles 1

1 Laboratoire de Mathématiques Jean Leray (UMR 6629), Université de Nantes, 2, rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France
@article{AMBP_2016__23_2_249_0,
     author = {Carron, Gilles},
     title = {Harmonic functions on {Manifolds} whose large spheres are small.},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {249--261},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {2},
     year = {2016},
     doi = {10.5802/ambp.362},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.362/}
}
TY  - JOUR
AU  - Carron, Gilles
TI  - Harmonic functions on Manifolds whose large spheres are small.
JO  - Annales mathématiques Blaise Pascal
PY  - 2016
SP  - 249
EP  - 261
VL  - 23
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.362/
DO  - 10.5802/ambp.362
LA  - en
ID  - AMBP_2016__23_2_249_0
ER  - 
%0 Journal Article
%A Carron, Gilles
%T Harmonic functions on Manifolds whose large spheres are small.
%J Annales mathématiques Blaise Pascal
%D 2016
%P 249-261
%V 23
%N 2
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.362/
%R 10.5802/ambp.362
%G en
%F AMBP_2016__23_2_249_0
Carron, Gilles. Harmonic functions on Manifolds whose large spheres are small.. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 249-261. doi : 10.5802/ambp.362. http://archive.numdam.org/articles/10.5802/ambp.362/

[1] Auscher, Pascal; Coulhon, Thierry Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 4 (2005) no. 3, pp. 531-555

[2] Bakry, Dominique Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI (Lecture Notes in Math.), Volume 1247, Springer, Berlin, 1987, pp. 137-172 | DOI

[3] Buser, Peter A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982) no. 2, pp. 213-230

[4] Cheng, Shiu-Yuen; Yau, Shing-Tung Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., Volume 28 (1975) no. 3, pp. 333-354 | DOI

[5] Colding, Tobias H.; Minicozzi, William P. II Harmonic functions on manifolds, Ann. Math. (2), Volume 146 (1997) no. 3, pp. 725-747 | DOI

[6] Colding, Tobias H.; Minicozzi, William P. II Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., Volume 51 (1998) no. 2, pp. 113-138 | DOI

[7] Gilles, Carron Riesz transform on manifolds with quadratic curvature decay (2014) (https://arxiv.org/abs/1403.6278, to appear in Rev. Mat. Iberoam.)

[8] Grigor’yan, Alexander; Saloff-Coste, Laurent Stability results for Harnack inequalities, Ann. Inst. Fourier, Volume 55 (2005) no. 3, pp. 825-890 http://aif.cedram.org/item?id=AIF_2005__55_3_825_0 | DOI

[9] Kasue, Atsushi Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature. I, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.), Volume 1339, Springer, Berlin, 1988, pp. 158-181 | DOI

[10] Kasue, Atsushi Harmonic functions of polynomial growth on complete manifolds. II, J. Math. Soc. Japan, Volume 47 (1995) no. 1, pp. 37-65 | DOI

[11] Li, Peter Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett., Volume 2 (1995) no. 1, pp. 79-94 | DOI

[12] Lott, John; Shen, Zhongmin Manifolds with quadratic curvature decay and slow volume growth, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 2, pp. 275-290 | DOI

[13] Sormani, Christina Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth, Pacific J. Math., Volume 192 (2000) no. 1, pp. 183-189 | DOI

[14] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970, xiv+290 pages

Cité par Sources :