Nous considérons la mesure uniforme sur l’ensemble des configurations de Gelfand–Tsetlin de profondeur après avoir fixé la position des particules de la n-ième ligne. De maniere équivalente, ces systèmes décrivent une grande classe de modèles de pavages aléatoires et ont un rapport étroit avec les processus de valeurs propres de mineurs d’une grande classe de matrices aléatoires hermitiennes. Ils ont une structure déterminantale et leur noyau de corrélation est connu. Nous redimensionnons le système par un facteur , et examinons son comportement asymptotique lorsque , sous l’hypothèse faible pour les particules sur la rangée , que la distribution empirique redimensionnée de ces dernières converge faiblement vers une mesure de probabilité avec support compact, et que cette dernière satisfasse un minimum de régularité.
Nous prouvons que le noyau de corrélation des particules dans le voisinage d’un « point typique du bord » converge vers le noyau de Airy étendu. A cette fin, nous trouvons dans un premier temps un dimensionnement adéquat pour la fluctuation des particules. Nous donnons une paramétrisation explicite du noyau asymptotique, définissons une courbe non-asymptotique analogue (et son équivalent en dimension ), et choisissons notre scaling de telle sorte que les particules fluctuent autour de cette courbe avec des ordres et , dans les directions respectivement tangentes et normales. Bien que les résultats de l’article soient naturels, les difficultés techniques liées à l’etude d’une si grande classe de modèles sous des hypothèses si faibles sont substantielles et inévitables.
We impose the uniform probability measure on the set of all discrete Gelfand–Tsetlin patterns of depth with the particles on row in deterministic positions. These systems equivalently describe a broad class of random tilings models, and are closely related to the eigenvalue minor processes of a broad class of random Hermitian matrices. They have a determinantal structure, with a known correlation kernel. We rescale the systems by , and examine the asymptotic behaviour, as , under weak asymptotic assumptions for the (rescaled) particles on row : The empirical distribution of these converges weakly to a probability measure with compact support, and they otherwise satisfy mild regulatory restrictions.
We prove that the correlation kernel of particles in the neighbourhood of “typical edge points” convergences to the extended Airy kernel. To do this, we first find an appropriate scaling for the fluctuations of the particles. We give an explicit parameterisation of the asymptotic edge, define an analogous non-asymptotic edge curve (or finite -deterministic equivalent), and choose our scaling such that the particles fluctuate around this with fluctuations of order and in the tangent and normal directions respectively. While the final results are quite natural, the technicalities involved in studying such a broad class of models under such weak asymptotic assumptions are unavoidable and extensive.
Keywords: Random lozenge tilings, Universal edge fluctuations, Steepest descent
Mot clés : Random lozenge tilings, Universal edge fluctuations, Steepest descent
@article{AMBP_2018__25_1_75_0, author = {Duse, Erik and Metcalfe, Anthony}, title = {Universal edge fluctuations of discrete interlaced particle systems}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {75--197}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {25}, number = {1}, year = {2018}, doi = {10.5802/ambp.373}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.373/} }
TY - JOUR AU - Duse, Erik AU - Metcalfe, Anthony TI - Universal edge fluctuations of discrete interlaced particle systems JO - Annales mathématiques Blaise Pascal PY - 2018 SP - 75 EP - 197 VL - 25 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.373/ DO - 10.5802/ambp.373 LA - en ID - AMBP_2018__25_1_75_0 ER -
%0 Journal Article %A Duse, Erik %A Metcalfe, Anthony %T Universal edge fluctuations of discrete interlaced particle systems %J Annales mathématiques Blaise Pascal %D 2018 %P 75-197 %V 25 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.373/ %R 10.5802/ambp.373 %G en %F AMBP_2018__25_1_75_0
Duse, Erik; Metcalfe, Anthony. Universal edge fluctuations of discrete interlaced particle systems. Annales mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 75-197. doi : 10.5802/ambp.373. http://archive.numdam.org/articles/10.5802/ambp.373/
[1] Spectral Analysis of Large Dimensional Random Matrices, Springer Series in Statistics, Springer, New York, 2010 | Zbl
[2] Asymptotics of Plancherel measures for the infinite-dimensional unitary group, Adv. Math., Volume 219 (2008) no. 3, pp. 894-931 | Zbl
[3] Asymptotics of random domino tilings of rectangular Aztec diamonds (2016) (https://arxiv.org/abs/1604.01491)
[4] Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Volume 25 (2015) no. 3, pp. 1232-1278 | Zbl
[5] The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | Zbl
[6] Orbit measures, random matrix theory and interlaced determinantal processes, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 46 (2010) no. 1, pp. 209-249 | Zbl
[7] The Cusp-Airy Process, Electron. J. Probab., Volume 21 (2016), 57, 57, 50 pages | Zbl
[8] Asymptotic geometry of discrete interlaced patterns: Part I, Int. J. Math., Volume 26 (2015) no. 11, 1550093, 1550093, 66 pages | Zbl
[9] Asymptotic geometry of discrete interlaced patterns: Part II (2015) (https://arxiv.org/abs/1507.00467)
[10] Large Complex Correlated Wishart Matrices: Fluctuations and Asymptotic Independence at the Edges, Ann. Probab., Volume 44 (2016) no. 3, pp. 2264-2348 | Zbl
[11] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Commun. Math. Phys., Volume 215 (2001), pp. 683-705 | Zbl
[12] Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., Volume 242 (2003), pp. 277-329 | Zbl
[13] The arctic circle boundary and the Airy process, Ann. Probab., Volume 33 (2005) no. 1, pp. 1-30 | Zbl
[14] Random matrices and determinantal processes, Mathematical Statistical Physics, Session LXXXIII: Lecture Notes of the Les Houches Summer School, Elsevier, 2006, pp. 1-56 | Zbl
[15] Eigenvalues of GUE Minors, Electron. J. Probab., Volume 11 (2006), pp. 1342-1371 (erratum in ibid., 12:1048–1051, 2007) | Zbl
[16] Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | Zbl
[17] Dimers and Amoebae, Ann. Math., Volume 163 (2006) no. 3, pp. 1019-1056 | Zbl
[18] Random Matrices, Pure and Applied Mathematics, 142, Elsevier, 2004 | Zbl
[19] Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Relat. Fields, Volume 155 (2013) no. 1-2, pp. 303-346 | Zbl
[20] Asymptotic Analysis, Applied Mathematical Sciences, 48, Springer, New York, 1984 | Zbl
[21] Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Stat. Phys., Volume 86 (1997), pp. 109-147 | Zbl
[22] Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, 171, American Mathematical Society, 2011 | Zbl
[23] Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, Volume 160 (2014) no. 3-4, pp. 429-487 | Zbl
[24] Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., Volume 108 (2002) no. 5-6, pp. 1071-1106 | Zbl
[25] The Pearcey process, Commun. Math. Phys., Volume 263 (2006), pp. 381-400 | Zbl
Cité par Sources :