We give a detailed account of Zlil Sela’s construction of Makanin–Razborov diagrams describing where is a finitely generated group and is a hyperbolic group. We also deal with the case where has torsion.
Nous proposons une présentation détaillée de la construction des diagrammes de Makanin–Razborov de Zlil Sela qui décrivent pour un groupe de type fini et un groupe hyperbolique . De plus, nous traitons le cas où est un groupe ayant de la torsion.
@article{AMBP_2019__26_2_119_0, author = {Weidmann, Richard and Reinfeldt, Cornelius}, title = {Makanin{\textendash}Razborov diagrams for hyperbolic groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {119--208}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {26}, number = {2}, year = {2019}, doi = {10.5802/ambp.387}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.387/} }
TY - JOUR AU - Weidmann, Richard AU - Reinfeldt, Cornelius TI - Makanin–Razborov diagrams for hyperbolic groups JO - Annales mathématiques Blaise Pascal PY - 2019 SP - 119 EP - 208 VL - 26 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.387/ DO - 10.5802/ambp.387 LA - en ID - AMBP_2019__26_2_119_0 ER -
%0 Journal Article %A Weidmann, Richard %A Reinfeldt, Cornelius %T Makanin–Razborov diagrams for hyperbolic groups %J Annales mathématiques Blaise Pascal %D 2019 %P 119-208 %V 26 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.387/ %R 10.5802/ambp.387 %G en %F AMBP_2019__26_2_119_0
Weidmann, Richard; Reinfeldt, Cornelius. Makanin–Razborov diagrams for hyperbolic groups. Annales mathématiques Blaise Pascal, Volume 26 (2019) no. 2, pp. 119-208. doi : 10.5802/ambp.387. http://archive.numdam.org/articles/10.5802/ambp.387/
[1] Notes on word hyperbolic groups, Group theory from a geometrical viewpoint, World Scientific, 1991, pp. 3-63 | Zbl
[2] Algebraic geometry over groups I: Algebraic sets and ideal theory, J. Algebra, Volume 219 (1999) no. 1, pp. 16-79 | DOI | MR
[3] -trees in topology, geometry, and group theory, Handbook of geometric topology, Elsevier, 2002, pp. 55-91
[4] Bounding the complexity of simplicial group actions on trees, Invent. Math., Volume 103 (1991) no. 3, pp. 449-469 | DOI | MR
[5] Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl
[6] Notes on Sela’s work: Limit groups and Makanin–Razborov diagrams, Geometric and cohomological methods in group theory (London Mathematical Society Lecture Note Series), Volume 358, Cambridge University Press, 2009, pp. 1-29 | MR
[7] Finite subgroups of hyperbolic groups, Algebra Logic, Volume 34 (1996) no. 6, pp. 343-345 | DOI | MR
[8] A note on finite subgroups of hyperbolic groups, Int. J. Algebra Comput., Volume 10 (2000) no. 4, pp. 399-405 | DOI | MR
[9] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | MR
[10] On systems of equations over free products of groups, J. Algebra, Volume 333 (2011) no. 1, pp. 368-426 | DOI | MR
[11] Foliations for solving equations in groups: free, virtually free and hyperbolic groups, J. Topol., Volume 3 (2010) no. 2, pp. 343-404 | DOI | MR | Zbl
[12] The accessibility of finitely presented groups, Invent. Math., Volume 81 (1985), pp. 449-457 | DOI | MR
[13] Groups acting on protrees, J. Lond. Math. Soc., Volume 56 (1997), pp. 125-136 | DOI | MR
[14] On the finiteness of higher knot sums, Topology, Volume 26 (1987), pp. 337-343 | DOI | MR
[15] JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl
[16] JSJ-decomposition of finitely presented groups and complexes of groups, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 70-125 | DOI | MR | Zbl
[17] Pseudogroups of isometries of and Rips’ theorem on free actions on -trees, Isr. J. Math., Volume 87 (1994) no. 1-3, pp. 403-428 | DOI | MR | Zbl
[18] Sur les groupes hyperboliques d’après Mikhael Gromov (Ghys, Etienne; de la Harpe, Pierre, eds.), Progress in Mathematics, 83, Birkhäuser, 1990 | Zbl
[19] Limit groups for relatively hyperbolic groups. II. Makanin–Razborov diagrams, Geom. Topol., Volume 9 (2005), pp. 2319-2358 | DOI | MR | Zbl
[20] Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki, Volume 48 (1986) no. 3, pp. 321-324 | MR | Zbl
[21] Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl
[22] Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 159-211 | DOI | Numdam | MR | Zbl
[23] JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages | Zbl
[24] Foldings, graphs of groups and the membership problem, Int. J. Algebra Comput., Volume 15 (2005) no. 1, pp. 95-128 | DOI | MR
[25] Representations of polygons of finite groups, Geom. Topol., Volume 9 (2005), pp. 1915-1951 | DOI | MR
[26] Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, Volume 200 (1998) no. 2, pp. 472-516 | DOI | MR | Zbl
[27] Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra, Volume 200 (1998) no. 2, pp. 517-570 | MR | Zbl
[28] Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier, Volume 48 (1998) no. 5, pp. 1441-1453 | DOI | MR
[29] Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl
[30] On accessibility of groups, J. Pure Appl. Algebra, Volume 30 (1983), pp. 39-46 | DOI | MR
[31] Equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982), pp. 1188-1273 | MR
[32] Systems of equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 48 (1984) no. 4, pp. 779-832 | MR
[33] On Systems of Equations in a Free Group, Ph. D. Thesis (1987)
[34] Limit groups and Makanin–Razborov diagrams for hyperbolic groups, Ph. D. Thesis (2010)
[35] Structure and rigidity in hyperbolic groups I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI | MR
[36] Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition, Ann. Math., Volume 146 (1997) no. 1, pp. 53-109 | DOI | MR
[37] The geometries of -manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR
[38] Acylindrical accessibility, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI | MR
[39] Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR
[40] Diophantine geometry over groups. I: Makanin–Razborov diagrams, Publ. Math., Inst. Hautes Étud. Sci., Volume 93 (2001), pp. 31-105 | DOI | Numdam | MR
[41] Diophantine geometry over groups. VII: The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc., Volume 99 (2009) no. 1, pp. 217-273 | DOI | MR
[42] Trees, 146, Springer, 1980, ix+142 pages
[43] Poincaré Complexes: I, Ann. Math., Volume 86 (1967), pp. 213-245 | DOI | Zbl
[44] The Nielsen method for groups acting on trees, Proc. Lond. Math. Soc., Volume 85 (2002) no. 1, pp. 93-118 | DOI | MR | Zbl
[45] On accessibility of finitely generated groups, Q. J. Math, Volume 63 (2012) no. 1, pp. 211-225 | DOI | MR
[46] Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835, Springer, 1980 | MR
Cited by Sources: