Makanin–Razborov diagrams for hyperbolic groups
Annales mathématiques Blaise Pascal, Volume 26 (2019) no. 2, pp. 119-208.

We give a detailed account of Zlil Sela’s construction of Makanin–Razborov diagrams describing Hom(G,Γ) where G is a finitely generated group and Γ is a hyperbolic group. We also deal with the case where Γ has torsion.

Nous proposons une présentation détaillée de la construction des diagrammes de Makanin–Razborov de Zlil Sela qui décrivent Hom(G,Γ) pour un groupe G de type fini et un groupe hyperbolique Γ. De plus, nous traitons le cas où Γ est un groupe ayant de la torsion.

Published online:
DOI: 10.5802/ambp.387
Keywords: Makanin–Razborov Diagrams
Weidmann, Richard 1; Reinfeldt, Cornelius 2

1 Mathematisches Seminar Christian-Albrechts-Universität zu Kiel Ludewig-Meyn Str. 4 24098 Kiel GERMANY
2 gestigon GmbH Maria-Goeppert-Str. 17 23562 Lübck GERMANY
@article{AMBP_2019__26_2_119_0,
     author = {Weidmann, Richard and Reinfeldt, Cornelius},
     title = {Makanin{\textendash}Razborov diagrams for hyperbolic groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {119--208},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {26},
     number = {2},
     year = {2019},
     doi = {10.5802/ambp.387},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ambp.387/}
}
TY  - JOUR
AU  - Weidmann, Richard
AU  - Reinfeldt, Cornelius
TI  - Makanin–Razborov diagrams for hyperbolic groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2019
SP  - 119
EP  - 208
VL  - 26
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.387/
DO  - 10.5802/ambp.387
LA  - en
ID  - AMBP_2019__26_2_119_0
ER  - 
%0 Journal Article
%A Weidmann, Richard
%A Reinfeldt, Cornelius
%T Makanin–Razborov diagrams for hyperbolic groups
%J Annales mathématiques Blaise Pascal
%D 2019
%P 119-208
%V 26
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.387/
%R 10.5802/ambp.387
%G en
%F AMBP_2019__26_2_119_0
Weidmann, Richard; Reinfeldt, Cornelius. Makanin–Razborov diagrams for hyperbolic groups. Annales mathématiques Blaise Pascal, Volume 26 (2019) no. 2, pp. 119-208. doi : 10.5802/ambp.387. http://archive.numdam.org/articles/10.5802/ambp.387/

[1] Alonso, Juan Miguel; Brady, Tom; Cooper, Daryl; Ferlini, Vincent; Lustig, Martin; Mihalic, Michael; Shapiro, Michael; Short, Hamish Notes on word hyperbolic groups, Group theory from a geometrical viewpoint, World Scientific, 1991, pp. 3-63 | Zbl

[2] Baumslag, Gilbert; Myasnikov, Alexei; Remeslennikov, Vladimir Algebraic geometry over groups I: Algebraic sets and ideal theory, J. Algebra, Volume 219 (1999) no. 1, pp. 16-79 | DOI | MR

[3] Bestvina, Mladen -trees in topology, geometry, and group theory, Handbook of geometric topology, Elsevier, 2002, pp. 55-91

[4] Bestvina, Mladen; Feighn, Mark Bounding the complexity of simplicial group actions on trees, Invent. Math., Volume 103 (1991) no. 3, pp. 449-469 | DOI | MR

[5] Bestvina, Mladen; Feighn, Mark Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl

[6] Bestvina, Mladen; Feighn, Mark Notes on Sela’s work: Limit groups and Makanin–Razborov diagrams, Geometric and cohomological methods in group theory (London Mathematical Society Lecture Note Series), Volume 358, Cambridge University Press, 2009, pp. 1-29 | MR

[7] Bogopolski, M.; Gerasimov, Victor N. Finite subgroups of hyperbolic groups, Algebra Logic, Volume 34 (1996) no. 6, pp. 343-345 | DOI | MR

[8] Brady, Noel A note on finite subgroups of hyperbolic groups, Int. J. Algebra Comput., Volume 10 (2000) no. 4, pp. 399-405 | DOI | MR

[9] Bridson, Martin; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | MR

[10] Casals-Ruiz, Montserrat; Kazachkov, Ilya V. On systems of equations over free products of groups, J. Algebra, Volume 333 (2011) no. 1, pp. 368-426 | DOI | MR

[11] Dahmani, François; Guirardel, Vincent Foliations for solving equations in groups: free, virtually free and hyperbolic groups, J. Topol., Volume 3 (2010) no. 2, pp. 343-404 | DOI | MR | Zbl

[12] Dunwoody, Martin The accessibility of finitely presented groups, Invent. Math., Volume 81 (1985), pp. 449-457 | DOI | MR

[13] Dunwoody, Martin Groups acting on protrees, J. Lond. Math. Soc., Volume 56 (1997), pp. 125-136 | DOI | MR

[14] Dunwoody, Martin; Fenn, Roger A. On the finiteness of higher knot sums, Topology, Volume 26 (1987), pp. 337-343 | DOI | MR

[15] Dunwoody, Martin; Sageev, Michah JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl

[16] Fujiwara, Koji; Papasoglu, Panos JSJ-decomposition of finitely presented groups and complexes of groups, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 70-125 | DOI | MR | Zbl

[17] Gaboriau, Damien; Levitt, Gilbert; Paulin, Frédéric Pseudogroups of isometries of and Rips’ theorem on free actions on -trees, Isr. J. Math., Volume 87 (1994) no. 1-3, pp. 403-428 | DOI | MR | Zbl

[18] Sur les groupes hyperboliques d’après Mikhael Gromov (Ghys, Etienne; de la Harpe, Pierre, eds.), Progress in Mathematics, 83, Birkhäuser, 1990 | Zbl

[19] Groves, Daniel Limit groups for relatively hyperbolic groups. II. Makanin–Razborov diagrams, Geom. Topol., Volume 9 (2005), pp. 2319-2358 | DOI | MR | Zbl

[20] Guba, Victor S. Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki, Volume 48 (1986) no. 3, pp. 321-324 | MR | Zbl

[21] Guirardel, Vincent Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl

[22] Guirardel, Vincent Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 159-211 | DOI | Numdam | MR | Zbl

[23] Guirardel, Vincent; Levitt, Gilbert JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages | Zbl

[24] Kapovich, Illya; Myasnikov, Alexei; Weidmann, Richard Foldings, graphs of groups and the membership problem, Int. J. Algebra Comput., Volume 15 (2005) no. 1, pp. 95-128 | DOI | MR

[25] Kapovich, Michael Representations of polygons of finite groups, Geom. Topol., Volume 9 (2005), pp. 1915-1951 | DOI | MR

[26] Kharlampovich, Olga; Myasnikov, Alexei Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, Volume 200 (1998) no. 2, pp. 472-516 | DOI | MR | Zbl

[27] Kharlampovich, Olga; Myasnikov, Alexei Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra, Volume 200 (1998) no. 2, pp. 517-570 | MR | Zbl

[28] Koubi, Malik Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier, Volume 48 (1998) no. 5, pp. 1441-1453 | DOI | MR

[29] Levitt, Gilbert Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl

[30] Linnell, Peter A. On accessibility of groups, J. Pure Appl. Algebra, Volume 30 (1983), pp. 39-46 | DOI | MR

[31] Makanin, Gennadiĭ S. Equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982), pp. 1188-1273 | MR

[32] Razborov, Aleksandr A. Systems of equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 48 (1984) no. 4, pp. 779-832 | MR

[33] Razborov, Aleksandr A. On Systems of Equations in a Free Group, Ph. D. Thesis (1987)

[34] Reinfeldt, Cornelius Limit groups and Makanin–Razborov diagrams for hyperbolic groups, Ph. D. Thesis (2010)

[35] Rips, Eliyahu; Sela, Zlil Structure and rigidity in hyperbolic groups I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI | MR

[36] Rips, Eliyahu; Sela, Zlil Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition, Ann. Math., Volume 146 (1997) no. 1, pp. 53-109 | DOI | MR

[37] Scott, Peter The geometries of 3-manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR

[38] Sela, Zlil Acylindrical accessibility, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI | MR

[39] Sela, Zlil Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR

[40] Sela, Zlil Diophantine geometry over groups. I: Makanin–Razborov diagrams, Publ. Math., Inst. Hautes Étud. Sci., Volume 93 (2001), pp. 31-105 | DOI | Numdam | MR

[41] Sela, Zlil Diophantine geometry over groups. VII: The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc., Volume 99 (2009) no. 1, pp. 217-273 | DOI | MR

[42] Serre, Jean-Pierre Trees, 146, Springer, 1980, ix+142 pages

[43] Wall, Charles T. C. Poincaré Complexes: I, Ann. Math., Volume 86 (1967), pp. 213-245 | DOI | Zbl

[44] Weidmann, Richard The Nielsen method for groups acting on trees, Proc. Lond. Math. Soc., Volume 85 (2002) no. 1, pp. 93-118 | DOI | MR | Zbl

[45] Weidmann, Richard On accessibility of finitely generated groups, Q. J. Math, Volume 63 (2012) no. 1, pp. 211-225 | DOI | MR

[46] Zieschang, Heiner; Vogt, Elmar; Coldewey, Hans-Dieter Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835, Springer, 1980 | MR

Cited by Sources: