Nous étudions la structure d’algèbre de Hopf des groupes quantiques de Lusztig.Tout d’abord, nous montrons que la partie zéro est le produit tensoriel de l’algèbre de groupe d’un groupe abélien fini avec l’algèbre enveloppante d’une algèbre de Lie abélienne. Ensuite, nous les construisons à partir des parties plus, moins et zéro au moyen d’actions et de coactions appropriées par le formalisme de Sommerhäuser pour décrire des décompositions triangulaires.
We study the Hopf algebra structure of Lusztig’s quantum groups. First we show that the zero part is the tensor product of the group algebra of a finite abelian group with the enveloping algebra of an abelian Lie algebra. Second we build them from the plus, minus and zero parts by means of suitable actions and coactions within the formalism presented by Sommerhäuser to describe triangular decompositions.
Keywords: Quantum groups, Lusztig quantum divided power algebras, Nichols algebras
Mot clés : Groupes quantiques, algèbres de puissance divisée quantique de Lusztig, algèbres de Nichols
@article{AMBP_2020__27_2_131_0, author = {Andruskiewitsch, Nicol\'as and Angiono, Iv\'an and Vay, Cristian}, title = {On the {Hopf} algebra structure of the {Lusztig} quantum divided power algebras}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {131--157}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {2}, year = {2020}, doi = {10.5802/ambp.393}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.393/} }
TY - JOUR AU - Andruskiewitsch, Nicolás AU - Angiono, Iván AU - Vay, Cristian TI - On the Hopf algebra structure of the Lusztig quantum divided power algebras JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 131 EP - 157 VL - 27 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.393/ DO - 10.5802/ambp.393 LA - en ID - AMBP_2020__27_2_131_0 ER -
%0 Journal Article %A Andruskiewitsch, Nicolás %A Angiono, Iván %A Vay, Cristian %T On the Hopf algebra structure of the Lusztig quantum divided power algebras %J Annales mathématiques Blaise Pascal %D 2020 %P 131-157 %V 27 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.393/ %R 10.5802/ambp.393 %G en %F AMBP_2020__27_2_131_0
Andruskiewitsch, Nicolás; Angiono, Iván; Vay, Cristian. On the Hopf algebra structure of the Lusztig quantum divided power algebras. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 2, pp. 131-157. doi : 10.5802/ambp.393. http://archive.numdam.org/articles/10.5802/ambp.393/
[1] Notes on extensions of Hopf algebras, Can. J. Math., Volume 48 (1996) no. 1, pp. 3-42 | DOI | MR | Zbl
[2] On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci., Volume 7 (2017) no. 3, pp. 353-573 | DOI | MR | Zbl
[3] A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2), Bull. Belg. Math. Soc. Simon Stevin, Volume 24 (2017) no. 1, pp. 15-34 http://projecteuclid.org/euclid.bbms/1489888813 | DOI | MR | Zbl
[4] The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type, Math. Res. Lett., Volume 24 (2017) no. 3, pp. 619-643 | DOI | MR | Zbl
[5] Lie algebras arising from Nichols algebras of diagonal type (2019) (https://arxiv.org/abs/1911.06586)
[6] Poisson orders on large quantum groups (2020) (https://arxiv.org/abs/2008.11025)
[7] On Nichols algebras of diagonal type, J. Reine Angew. Math., Volume 683 (2013), pp. 189-251 | DOI | MR | Zbl
[8] Distinguished pre-Nichols algebras, Transform. Groups, Volume 21 (2016) no. 1, pp. 1-33 | DOI | MR | Zbl
[9] Representations of quantum groups at roots of , Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) (Progress in Mathematics), Volume 92, Birkhäuser, 1990, pp. 471-506 | MR | Zbl
[10] Quantum groups, -modules, representation theory, and quantum groups (Venice, 1992) (Lecture Notes in Mathematics), Volume 1565, Springer, 1993, pp. 31-140 | DOI | MR
[11] Classification of arithmetic root systems, Adv. Math., Volume 220 (2009) no. 1, pp. 59-124 | DOI | MR
[12] Pointed Hopf algebras with triangular decomposition, Algebr. Represent. Theory, Volume 19 (2016) no. 3, pp. 547-578 | DOI | MR | Zbl
[13] A Frobenius homomorphism for Lusztig’s quantum groups for arbitrary roots of unity, Commun. Contemp. Math., Volume 18 (2016) no. 3, 1550040, 42 pages | DOI | MR | Zbl
[14] The unrolled quantum group inside Lusztig’s quantum group of divided powers, Lett. Math. Phys., Volume 109 (2019) no. 7, pp. 1665-1682 | DOI | MR | Zbl
[15] Quantum deformations of certain simple modules over enveloping algebras, Adv. Math., Volume 70 (1988) no. 2, pp. 237-249 | DOI | MR | Zbl
[16] Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) (Contemporary Mathematics), Volume 82, American Mathematical Society, 1989, pp. 59-77 | DOI | MR | Zbl
[17] Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Am. Math. Soc., Volume 3 (1990) no. 1, pp. 257-296 | DOI | MR | Zbl
[18] Quantum groups at roots of , Geom. Dedicata, Volume 35 (1990) no. 1-3, pp. 89-113 | DOI | MR | Zbl
[19] Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser, 1993, xii+341 pages | MR | Zbl
[20] Double-bosonization of braided groups and the construction of , Math. Proc. Camb. Philos. Soc., Volume 125 (1999) no. 1, pp. 151-192 | DOI | MR
[21] Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, 1993, xiv+238 pages | DOI | MR | Zbl
[22] Hopf algebras, Series on Knots and Everything, 49, World Scientific, 2012, xxii+559 pages | MR | Zbl
[23] Deformed enveloping algebras, New York J. Math., Volume 2 (1996), pp. 35-58 http://nyjm.albany.edu:8000/j/1996/2_35.html | MR | Zbl
Cité par Sources :