@article{CCIRM_2011__2_1_A3_0, author = {Pottier, Lo{\"\i}c}, title = {Preuves formelles automatiques et calcul formel}, booktitle = {Journ\'ees Nationales de Calcul Formel. 14 {\textendash} 18 Novembre 2011}, series = {Les cours du CIRM}, note = {talk:3}, pages = {1--25}, publisher = {CIRM}, number = {1}, year = {2011}, doi = {10.5802/ccirm.15}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/ccirm.15/} }
TY - JOUR AU - Pottier, Loïc TI - Preuves formelles automatiques et calcul formel BT - Journées Nationales de Calcul Formel. 14 – 18 Novembre 2011 AU - Collectif T3 - Les cours du CIRM N1 - talk:3 PY - 2011 SP - 1 EP - 25 IS - 1 PB - CIRM UR - http://archive.numdam.org/articles/10.5802/ccirm.15/ DO - 10.5802/ccirm.15 LA - fr ID - CCIRM_2011__2_1_A3_0 ER -
%0 Journal Article %A Pottier, Loïc %T Preuves formelles automatiques et calcul formel %B Journées Nationales de Calcul Formel. 14 – 18 Novembre 2011 %A Collectif %S Les cours du CIRM %Z talk:3 %D 2011 %P 1-25 %N 1 %I CIRM %U http://archive.numdam.org/articles/10.5802/ccirm.15/ %R 10.5802/ccirm.15 %G fr %F CCIRM_2011__2_1_A3_0
Pottier, Loïc. Preuves formelles automatiques et calcul formel, dans Journées Nationales de Calcul Formel. 14 – 18 Novembre 2011, Les cours du CIRM, no. 1 (2011), Exposé no. 3, 25 p. doi : 10.5802/ccirm.15. http://archive.numdam.org/articles/10.5802/ccirm.15/
[1] The Semantics of Reflected Proof, LICS, IEEE Computer Society, 1990, pp. 95-105
[2] Réflexions sur les quotients., Thèse d’informatique, Université Paris VII (1997)
[3] Bruno Buchberger’s PhD thesis 1965 : An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Journal of Symbolic Computation, Volume 41 (2006) no. 3-4
[4] Context Aware Calculation and Deduction., Calculemus/MKM (LNCS), Volume 4573, Springer-Verlag, 2007, pp. 27-39
[5] A Tutorial Introduction to MAPLE, Journal of Symbolic Computation, Volume 2 (1986) no. 2, pp. 179-200
[6] Mechanical geometry theorem proving, Kluwer Academic Publishers, 1987
[7] Commutative Algebra : with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1999
[8] Straight-line programs in geometric elimination theory, Journal of Pure and Applied Algebra, Volume 124 (1998) no. 1/3, pp. 101-146
[9] Macaulay2 (http://www.math.uiuc.edu/Macaulay2/)
[10] A compiled implementation of strong reduction, International Conference on Functional Programming 2002, ACM Press, 2002, pp. 235-246
[11] Proving Equalities in a Commutative Ring Done Right in Coq, TPHOLs 2005 (LNCS), Volume 3603, Springer-Verlag, 2005, pp. 98-113
[12] Proof Certificates for Algebra and their Application to Automatic Geometry Theorem Proving, Automated Deduction in Geometry, ADG 2008, Revised Papers, Lecture Notes in Computer Science, Volume 6301 (2011) no. 2
[13] A computational approach to Pocklington certificates in type theory, FLOPS’06 (LNCS), Volume 3945, Springer-Verlag, 2006, pp. 97-113
[14] HOL Light : A tutorial introduction, FMCAD’96 (LNCS), Volume 1166, Springer-Verlag, 1996, pp. 265-269
[15] Complex quantifier elimination in HOL, TPHOLs 2001 : Supplemental Proceedings, Division of Informatics, University of Edinburgh (2001), pp. 159-174 (Published as Informatics Report Series EDI-INF-RR-0046)
[16] Automating elementary number-theoretic proofs using Gröbner bases, CADE 21 (LNCS), Volume 4603, Springer-Verlag, 2007, pp. 51-66
[17] Verifying nonlinear real formulas via sums of squares, TPHOLs’2007 (LNCS), Volume 4732, Springer-Verlag, 2007, pp. 102-118
[18] Handbook of Practical Logic and Automated Reasoning, Cambridge University Press, 2009
[19] Geometry theorem proving using Hilbert’s Nullstellensatz, SYMSAC ’86 : Proceedings of the fifth ACM symposium on Symbolic and algebraic computation, ACM, 1986, pp. 202-208
[20] A refutational approach to geometry theorem proving, Artificial Intelligence, Volume 37 (1988) no. 1-3, pp. 61-93
[21] Automated Geometric Reasoning : Dixon Resultants, Gröbner Bases, and Characteristic Sets, Automated Deduction in Geometry (LNCS), Volume 1360, Springer-Verlag, 1996, pp. 1-36
[22] Isabelle : A generic theorem prover, Journal of Automated Reasoning, Volume 828 (1994)
[23] Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics, Proceedings of the LPAR Workshops : Knowledge Exchange : Automated Provers and Proof Assistants, and The 7th International Workshop on the Implementation of Logics, CEUR Workshop Proceedings (2008) no. 418
[24] Geometry Theorem Proving in the Frame of the Theorema Project (2002) no. 02-23 (Technical report PhD Thesis)
[25] A Machine-Checked Implementation of Buchberger’s Algorithm, Journal of Automated Reasoning, Volume 26 (2001) no. 2
[26] Formalizing 100 Theorems (http://www.cs.ru.nl/~freek/100)
[27] On the Decision Problem and the Mechanization of Theorem-Proving in Elementary Geometry, Automated Theorem Proving - After 25 Years, American Mathematical Society, 1984, pp. 213-234
Cité par Sources :