Surface groups are determined among limit groups by their profinite completions. As a corollary, the set of surface words in a free group is closed in the profinite topology.
Revised:
Accepted:
Published online:
@article{CRMATH_2021__359_2_119_0, author = {Wilton, Henry}, title = {On the profinite rigidity of surface groups and surface words}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--122}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.121}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/crmath.121/} }
TY - JOUR AU - Wilton, Henry TI - On the profinite rigidity of surface groups and surface words JO - Comptes Rendus. Mathématique PY - 2021 SP - 119 EP - 122 VL - 359 IS - 2 PB - Académie des sciences, Paris UR - http://archive.numdam.org/articles/10.5802/crmath.121/ DO - 10.5802/crmath.121 LA - en ID - CRMATH_2021__359_2_119_0 ER -
%0 Journal Article %A Wilton, Henry %T On the profinite rigidity of surface groups and surface words %J Comptes Rendus. Mathématique %D 2021 %P 119-122 %V 359 %N 2 %I Académie des sciences, Paris %U http://archive.numdam.org/articles/10.5802/crmath.121/ %R 10.5802/crmath.121 %G en %F CRMATH_2021__359_2_119_0
Wilton, Henry. On the profinite rigidity of surface groups and surface words. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 119-122. doi : 10.5802/crmath.121. http://archive.numdam.org/articles/10.5802/crmath.121/
[1] Residually free groups, Proc. Lond. Math. Soc., Volume 17 (1967), pp. 402-418 | DOI | MR | Zbl
[2] On generalised free product, Math. Z., Volume 78 (1962), pp. 423-438 | DOI | MR | Zbl
[3] Residually finite groups with the same finite images, Compos. Math., Volume 29 (1974), pp. 249-252 | Numdam | MR | Zbl
[4] On the profinite rigidity of triangle groups (2004) (https://arxiv.org/abs/2004.07137)
[5] Absolute profinite rigidity and hyperbolic geometry, Ann. Math., Volume 192 (2020) no. 3, pp. 679-719 | DOI | MR | Zbl
[6] Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J., Volume 144 (2008) no. 1, pp. 53-72 | DOI | MR | Zbl
[7] Some orbits of free words that are determined by measures on finite groups, J. Algebra, Volume 555 (2020), pp. 305-324 | DOI | MR | Zbl
[8] Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, Volume 200 (1998) no. 2, pp. 472-516 | DOI | MR | Zbl
[9] Surface words are determined by word measures on groups (2019) (https://arxiv.org/pdf/1902.04873.pdf, to appear in Israel Journal of Mathematics)
[10] Infinite groups, Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom., Volume 17 (1979), pp. 65-157 | Zbl
[11] Measure preserving words are primitive, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 63-97 | DOI | MR | Zbl
[12] Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publ. Math., Inst. Hautes Étud. Sci., Volume 93 (2001), pp. 31-105 | DOI | Numdam | MR | Zbl
[13] Galois cohomology, Springer Monographs in Mathematics, Springer, 1997 (Translated from the French by Patrick Ion and revised by the author) | Zbl
[14] Hall’s Theorem for limit groups, Geom. Funct. Anal., Volume 18 (2008) no. 1, pp. 271-303 | DOI | MR | Zbl
[15] Essential surfaces in graph pairs, J. Am. Math. Soc., Volume 31 (2018) no. 4, pp. 893-919 | DOI | MR | Zbl
[16] Distinguishing geometries using finite quotients, Geom. Topol., Volume 21 (2017) no. 1, pp. 345-384 | DOI | MR | Zbl
[17] Profinite detection of 3-manifold decompositions, Compos. Math., Volume 155 (2019) no. 2, pp. 246-259 | DOI | MR | Zbl
[18] Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math, Volume 51 (2000) no. 1, pp. 107-129 | DOI | MR | Zbl
Cited by Sources: