On présente quelques problèmes et résultats de type limites hydrodynamiques pour des modèles couplés fluide/cinétique décrivant l'interaction de particules avec un fluide en mouvement.
@incollection{JEDP_2002____A7_0, author = {Goudon, Thierry and Jabin, Pierre-Emmanuel and Vasseur, Alexis}, title = {Limites hydrodynamiques pour les \'equations de {Vlasov-Stokes}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.605}, mrnumber = {1968203}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/jedp.605/} }
TY - JOUR AU - Goudon, Thierry AU - Jabin, Pierre-Emmanuel AU - Vasseur, Alexis TI - Limites hydrodynamiques pour les équations de Vlasov-Stokes JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 16 PB - Université de Nantes UR - http://archive.numdam.org/articles/10.5802/jedp.605/ DO - 10.5802/jedp.605 LA - fr ID - JEDP_2002____A7_0 ER -
%0 Journal Article %A Goudon, Thierry %A Jabin, Pierre-Emmanuel %A Vasseur, Alexis %T Limites hydrodynamiques pour les équations de Vlasov-Stokes %J Journées équations aux dérivées partielles %D 2002 %P 1-16 %I Université de Nantes %U http://archive.numdam.org/articles/10.5802/jedp.605/ %R 10.5802/jedp.605 %G fr %F JEDP_2002____A7_0
Goudon, Thierry; Jabin, Pierre-Emmanuel; Vasseur, Alexis. Limites hydrodynamiques pour les équations de Vlasov-Stokes. Journées équations aux dérivées partielles (2002), article no. 7, 16 p. doi : 10.5802/jedp.605. http://archive.numdam.org/articles/10.5802/jedp.605/
[1] Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés, C. R. Acad. Sci., 331 (2000) 651-654. | MR | Zbl
[2] Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000) 737-754. | MR | Zbl
,[3] Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983) 885-906. | MR | Zbl
, ,[4] Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow, Math. Models Methods Appl. Sci., 7 (1997) 239-263. | MR | Zbl
, ,[5] About the modelling of complex flows by gas-particle methods, Preprint CMLA, 2001.
,[6] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989) 511-547. VII-14 | MR | Zbl
, ,[7] Existence and stability of traveling wave solutions in a kinetic model of two-phase flows, Comm. PDE, 24 (1999) 61-108. | MR | Zbl
, ,[8] Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels, C. R. Acad. Sci., 332 (2001) 863-868. | MR | Zbl
, ,[9] Dumas, Homogenization of transport equations, SIAM J. Appl. Math., 60 (2000) 1447-1470. | MR | Zbl
,[10] Elliptic PDE of second order, (Springer, 1983). | Zbl
, ,[11] La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques Séminaire Equations aux Dérivées Partielles, 1999-2000, Exp. No. XIX, Ecole Polytechnique, Palaiseau, 2000. | Numdam | MR | Zbl
, , ,[12] Asymptotic problems for a kinetic model of two-phase flow, Proc. Royal Soc. Edimburgh, 131, (2001) 1371-1384. | MR | Zbl
,[13] Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Industrial and Appl. Math., 15 (1998) 51-74. | MR
,[14]
, Umpublished work, Personal Communication.[15] On the motion of dispersed balls in a potential flow : a kinetic description of the added mass effect, SIAM J. Appl. Math., 60 (1999) 61-83. | MR | Zbl
, , ,[16] Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE., 25 (2000) 541-557. | MR | Zbl
,[17] Macroscopic limit of Vlasov type equations with friction, Ann. IHP Anal. Non Linéaire, 17 (2000) 651-672. | Numdam | MR | Zbl
,[18] Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo, M. Pulvirenti Eds. (Birkhäuser, 2000), pp. 111-147. | MR | Zbl
, ,[19] Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994) 391-461, 1994 and 34 (1994) 539-584. | MR | Zbl
,[20] High field limit for the VPFP system, Arch. Rat. Mech. Anal., 158 (2001) 29-59. | MR | Zbl
, , ,[21] Parabolic limit and stability of the Vlasov-PoissonFokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000) 1027-1045. | MR | Zbl
, ,[22] Kinetic theory for bubbly flows I, II, SIAM J. Appl. Math., 56 (1996) 327-371. | MR | Zbl
, ,[23] Compact sets in L p (0,T ; B), Ann. Mat. Pura. Appl. IV, 146 (1987) 65-96. | MR | Zbl
,[24] Combustion theory (Benjamin Cummings Publ., 2nd ed., 1985
,Cité par Sources :