Nous profilons une démonstration de l’existence globale et diffusion pour l’équation de Schrödinger nonlinéaire répulsive cubique avec données à pour . Le raisonnement utilise une estimation nouvelle de type de Morawetz. Nous détaillerons la démonstration ailleurs.
We sketch a proof of global existence and scattering for the defocusing cubic nonlinear Schrödinger equation in for . The proof uses a new estimate of Morawetz type.
@article{JEDP_2002____A10_0, author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, T.}, title = {Existence globale et diffusion pour l{\textquoteright}\'equation de {Schr\"odinger} non lin\'eaire r\'epulsive cubique sur $mathbb{R}^3$ en dessous l{\textquoteright}espace d{\textquoteright}\'energie}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {10}, pages = {1--15}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.608}, mrnumber = {1968206}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jedp.608/} }
TY - JOUR AU - Colliander, J. AU - Keel, M. AU - Staffilani, G. AU - Takaoka, H. AU - Tao, T. TI - Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 15 PB - Université de Nantes UR - http://archive.numdam.org/articles/10.5802/jedp.608/ DO - 10.5802/jedp.608 LA - en ID - JEDP_2002____A10_0 ER -
%0 Journal Article %A Colliander, J. %A Keel, M. %A Staffilani, G. %A Takaoka, H. %A Tao, T. %T Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie %J Journées équations aux dérivées partielles %D 2002 %P 1-15 %I Université de Nantes %U http://archive.numdam.org/articles/10.5802/jedp.608/ %R 10.5802/jedp.608 %G en %F JEDP_2002____A10_0
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Existence globale et diffusion pour l’équation de Schrödinger non linéaire répulsive cubique sur $mathbb{R}^3$ en dessous l’espace d’énergie. Journées équations aux dérivées partielles (2002), article no. 10, 15 p. doi : 10.5802/jedp.608. http://archive.numdam.org/articles/10.5802/jedp.608/
[1] Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. Math. 118, (1983), 187-214. | MR | Zbl
,[2] Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity Intern. Mat. Res. Notices, 5, (1998), 253-283. | MR | Zbl
,[3] Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12, (1999), 145-171. | MR | Zbl
,[4] Scattering in the energy space and below for 3D NLS, Jour. D'Anal. Math., 75:267-297, 1998. | MR | Zbl
.[5] Global solutions of nonlinear Schrödinger equations American Math. Society, Providence, R.I., 1999. | MR | Zbl
,[6] Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, GAFA, 3 (1993), 107-156. | MR | Zbl
,[7] The Cauchy problem for the nonlinear Schrödinger equation in H 1. Manuscripta Math. 61 (1988), 477-494. | MR | Zbl
, ,[8] Global wellposedness for KdV below L 2, Math. Res. Lett. 6 (1999), no. 5-6, 755-778. | MR | Zbl
, , ,[9] Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), no. 8, 3307-3325. | MR | Zbl
, , , ,[10] Global well-posedness for KdV in Sobolev spaces of negative index, Electronic Jour. Diff. Eq. 2001 (2001), No 26, 1-7. | MR | Zbl
, , , ,[11] Sharp Global WellPosedness of KdV and Modified KdV on the R and T, submitted to Jour. Amer. Math. Soc. | MR | Zbl
, , , ,[12] Multilinear estimates for periodic KdV equations, and applications, preprint. | MR
, , , ,[13] Global well-posedness for the Schrödinger equations with derivative, Siam Jour. Math. Anal., 33 (2001), 649-669. | MR | Zbl
, , , ,[14] A refined global wellposedness result for Schrödinger equations with derivative, to appear in Siam Jour. of Math. Anal.. | MR | Zbl
, , , , T.Tao,[15] Almost conservation laws and global rough solutions to a Nonlinear Schrödinger Equation, to appear in Math. Res. Letters. X-13 | MR | Zbl
, , , ,[16] Global well-posedness of the modified Korteweg-de Vries equation, Comm. Partial Differential Equations, 24 (1999), 683-705. | MR | Zbl
, and .[17] Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 9, (1985), 363-401. | MR | Zbl
and .[18] Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. | MR | Zbl
, ,[19] Global well-posedness for large data for the MaxwellKlein-Gordon equation below the energy norm, preprint.
, and ,[20] Local and global well-posedness of wave maps on R 1+1 for rough data, Intl. Math. Res. Notices 21 (1998), 1117-1156. | MR | Zbl
, ,[21] Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. | MR | Zbl
, ,[22] Global well-posedness for semi-linear wave equations. Comm. Partial Diff. Eq. 25 (2000), 1741-1752. | MR | Zbl
, , ;[23] Decay and scattering of solutions of a nonlinear Schrödinger equation, Journ. Funct. Anal. 30, (1978), 245-263. | MR | Zbl
, ,[24] Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A 306 (1968), 291-29 | MR | Zbl
,[25] Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1-31. | MR | Zbl
, ,[26] Space-time decay for solutions of wave equations, Adv. Math. 22 (1976), 304-311. | MR | Zbl
,[27] Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-774. | Zbl
,[28] Global well-posedness for the Schrödinger equations with derivative in a nonlinear term and data in low order Sobolev space, Electronic Jour. Diff. Eq., 42 (2001), 1-23. | MR | Zbl
,[29] Global low regularity solutions for KadomtsevPetviashvili equation, Internat. Math. Res. Notices, 2001, No. 2, 77-114. | Zbl
, ,[30] Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), 443-544. | MR | Zbl
,[31] Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987) | MR | Zbl
,Cité par Sources :