We obtain some microlocal estimates of the resonant states associated to a resonance of an -differential operator. More precisely, we show that the normalized resonant states are outside the set of trapped trajectories and are in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.
@article{JEDP_2003____A2_0, author = {Bony, Jean-Fran\c{c}ois and Michel, Laurent}, title = {Microlocalization of resonant states and estimates of the residue of the scattering amplitude}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--12}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.616}, mrnumber = {2050588}, zbl = {02079437}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jedp.616/} }
TY - JOUR AU - Bony, Jean-François AU - Michel, Laurent TI - Microlocalization of resonant states and estimates of the residue of the scattering amplitude JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 12 PB - Université de Nantes UR - http://archive.numdam.org/articles/10.5802/jedp.616/ DO - 10.5802/jedp.616 LA - en ID - JEDP_2003____A2_0 ER -
%0 Journal Article %A Bony, Jean-François %A Michel, Laurent %T Microlocalization of resonant states and estimates of the residue of the scattering amplitude %J Journées équations aux dérivées partielles %D 2003 %P 1-12 %I Université de Nantes %U http://archive.numdam.org/articles/10.5802/jedp.616/ %R 10.5802/jedp.616 %G en %F JEDP_2003____A2_0
Bony, Jean-François; Michel, Laurent. Microlocalization of resonant states and estimates of the residue of the scattering amplitude. Journées équations aux dérivées partielles (2003), article no. 2, 12 p. doi : 10.5802/jedp.616. http://archive.numdam.org/articles/10.5802/jedp.616/
[20] Foundations of mechanics, Second edition, Advanced Book Program, Benjamin/Cummings Publishing, 1978. | MR | Zbl
and ,[21] Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), no. 4, 677-735. | MR | Zbl
,[22] Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. | MR | Zbl
and ,[23] Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 1, 31-82. | Numdam | MR | Zbl
and ,[24] Breit-Wigner formula at barrier tops, preprint (2002). | MR
and ,[25] Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 1, 81-110. | Numdam | MR | Zbl
and ,[26] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391-421. | MR | Zbl
and ,[27] Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25. | Numdam | MR | Zbl
and ,[28] Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ Tokyo 35 (1985), no. 1, 81-107. | MR | Zbl
and ,[29] Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), no. 1, 1-21. | MR | Zbl
and ,[30] Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 3, 303-338. | Numdam | MR | Zbl
,[31] Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13-38. | MR | Zbl
and ,[32] An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, 2002. | MR | Zbl
,[33] Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy, Can. J. Math., to appear. | MR | Zbl
,[34] Semi-classical estimate of the residue of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393. | MR | Zbl
,[35] Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), no. 4, 675-711. | MR | Zbl
and ,[36] Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166. | Numdam | MR | Zbl
,[37] Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Springer, Berlin, 1987, pp. 402-429. | MR | Zbl
,[38] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. | MR | Zbl
and ,[39] Estimates on the residue of the scattering amplitude, Asympt. Anal. 32 (2002), no. 3,4, 317-333. | MR | Zbl
,[40] Sharp upper bounds on the number of resonances near the real axis for trapped systems, Amer. J. Math., 125 (2003), no. 1, 183-224. | MR | Zbl
,[41] From quasimodes to resonances, Math. Res. Lett. 5 (1998), no. 3, 261-272. | MR | Zbl
and ,Cité par Sources :