Billiards and boundary traces of eigenfunctions
Journées équations aux dérivées partielles (2003), article no. 15, 22 p.

This is a report on recent results with A. Hassell on quantum ergodicity of boundary traces of eigenfunctions on domains with ergodic billiards, and of work in progress with Hassell and Sogge on norms of boundary traces. Related work by Burq, Grieser and Smith-Sogge is also discussed.

@article{JEDP_2003____A15_0,
     author = {Zelditch, Steve},
     title = {Billiards and boundary traces of eigenfunctions},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {15},
     pages = {1--22},
     publisher = {Universit\'e de Nantes},
     year = {2003},
     doi = {10.5802/jedp.629},
     mrnumber = {2050601},
     zbl = {02079450},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jedp.629/}
}
TY  - JOUR
AU  - Zelditch, Steve
TI  - Billiards and boundary traces of eigenfunctions
JO  - Journées équations aux dérivées partielles
PY  - 2003
SP  - 1
EP  - 22
PB  - Université de Nantes
UR  - http://archive.numdam.org/articles/10.5802/jedp.629/
DO  - 10.5802/jedp.629
LA  - en
ID  - JEDP_2003____A15_0
ER  - 
%0 Journal Article
%A Zelditch, Steve
%T Billiards and boundary traces of eigenfunctions
%J Journées équations aux dérivées partielles
%D 2003
%P 1-22
%I Université de Nantes
%U http://archive.numdam.org/articles/10.5802/jedp.629/
%R 10.5802/jedp.629
%G en
%F JEDP_2003____A15_0
Zelditch, Steve. Billiards and boundary traces of eigenfunctions. Journées équations aux dérivées partielles (2003), article  no. 15, 22 p. doi : 10.5802/jedp.629. http://archive.numdam.org/articles/10.5802/jedp.629/

[AG] D. Alonso and P. Gaspard, ˉh expansion for the periodic orbit quantization of chaotic systems. Chaos 3 (1993), no. 4, 601-612. | MR | Zbl

[B] A. Backer, Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems, Mathematical Aspects of Quantum Maps, M. Degli Esposti and S. Graffi (Eds.), Springer Lecture Notes in Physics 618 (2003). | Zbl

[BS] A. Backer and R. Schubert, Chaotic eigenfunctions in momentum space. J. Phys. A 32 (1999), no. 26, 4795-4815 | MR | Zbl

[BB1] R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain I: three-dimensional problem with smooth boundary surface, Ann. Phys. 60 (1970), 401-447. | MR | Zbl

[BB2] R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. III. Eigenfrequency density oscillations. Ann. Physics 69 (1972), 76-160. | MR | Zbl

[BFSS] A. Backer, S. Furstberger, R. Schubert, and F. Steiner, Behaviour of boundary functions for quantum billiards. J. Phys. A 35 (2002), no. 48, 10293-10310. | MR | Zbl

[BLR] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992), no. 5, 1024-1065. | MR | Zbl

[Bi] Bialy, Misha(IL-TLAV) Convex billiards and a theorem by E. Hopf. Math. Z. 214 (1993), no. 1, 147-154 | MR | Zbl

[Bu] N. Burq, Quantum ergodicity of boundary values of eigenfunctions: a control theory approach, arXiv:math.AP/0301349, 2003.

[DS] M. Dimassi and J. Sjostrand, Spectral asymptotics in the semi-classical limit. London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. | MR | Zbl

[GP] B. Georgeot and R.E. Prange, Exact and quasiclassical Fredholm solutions of quantum billiards. Phys. Rev. Lett. 74 (1995), no. 15, 2851-2854. | MR | Zbl

[GL] P. Gerard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993), 559-607. | MR | Zbl

[G] D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1283-1299. | MR | Zbl

[GM] V. Guillemin and R. B. Melrose, The Poisson summation formula for manifolds with boundary. Adv. in Math. 32 (1979), no. 3, 204-232. | MR | Zbl

[THS] T. Harayama, A. Shudo, and S. Tasaki, Semiclassical Fredholm determinant for strongly chaotic billiards. Nonlinearity 12 (1999), no. 4, 1113-1149. | MR | Zbl

[THS2] T. Harayama, A. Shudo, and S. Tasaki, Interior Dirichlet eigenvalue problem, exterior Neumann scattering problem, and boundary element method for quantum billiards. Phys. Rev. E (3) 56 (1997), no. 1, part A, R13-R16. | MR

[HT] A. Hassell and T. Tao, Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions. Math. Res. Lett. 9 (2002), no. 2-3, 289-305. | MR | Zbl

[HSZ] A. Hassell, C. Sogge and S. Zelditch, Billiards and boundary traces of eigenfunctions, (in preparation).

[HZ] A. Hassell and S. Zelditch, Ergodicity of boundary values of eigenfunctions, preprint (2002).

[I] V. Ivrii, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. (Russian) Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25-34 | MR | Zbl

[M] R. B. Melrose, The trace of the wave group. Microlocal analysis (Boulder, Colo., 1983), 127-167, Contemp. Math., 27, Amer. Math. Soc., Providence, RI, 1984. | MR | Zbl

[O] S. Ozawa, Asymptotic property of eigenfunction of the Laplacian at the boundary. Osaka J. Math. 30 (1993), 303-314. | MR | Zbl

[O2] S. Ozawa, Hadamard's variation of the Green kernels of heat equations and their traces. I. J. Math. Soc. Japan 34 (1982), no. 3, 455-473. | MR | Zbl

[SV] Y. Safarov and D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators. Translations of Mathematical Monographs, 155. American Mathematical Society, Providence, RI, 1997. | MR | Zbl

[S] C. D. Sogge, Eigenfunction and Bochner Riesz estimates on manifolds with boundary. Math. Res. Lett. 9 (2002), no. 2-3, 205-216. | MR | Zbl

[SS] C. Sogge and H. Smith (in preparation).

[SZ] C. D. Sogge and S. Zelditch, Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. 114 (2002), no. 3, 387-437. | MR | Zbl

[T] D. Tataru, On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 1, 185-206. | Numdam | MR | Zbl

[TV] J. M Tualle and A. Voros, Normal modes of billiards portrayed in the stellar (or nodal) representation. Chaos Solitons Fractals 5 (1995), no. 7, 1085-1102. | MR | Zbl

[W] Wojtkowski, Maciej P.(1-AZ) Two applications of Jacobi fields to the billiard ball problem. (English. English summary) J. Differential Geom. 40 (1994), no. 1, 155-164 | MR | Zbl

[Z1] S. Zelditch, The inverse spectral problem for analytic plane domains, I: Balian-Bloch trace formula (arXiv: math.SP/0111077).

[ZZw] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys. 175 (1996), 673-682. | MR | Zbl

Cité par Sources :