Mixing solutions for IPM
Journées équations aux dérivées partielles (2017), Exposé no. 3, 13 p.

We explain the main steps in the proof of the existence of mixing solutions of the incompressible porous media equation for all Muskat type H 5 initial data in the fully unstable regime which appears in [4]. Also we present some numerical simulations about these solutions.

Publié le :
DOI : 10.5802/jedp.653
Castro, Ángel 1

1 Instituto de Ciencias Matemáticas C/ Nicolás Cabrera, 13-15 Campus de Cantoblanco Universidad Autonóma de Madrid 28049 Madrid, Spain
@article{JEDP_2017____A3_0,
     author = {Castro, \'Angel},
     title = {Mixing solutions for {IPM}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:3},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.653},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jedp.653/}
}
TY  - JOUR
AU  - Castro, Ángel
TI  - Mixing solutions for IPM
JO  - Journées équations aux dérivées partielles
N1  - talk:3
PY  - 2017
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://archive.numdam.org/articles/10.5802/jedp.653/
DO  - 10.5802/jedp.653
LA  - en
ID  - JEDP_2017____A3_0
ER  - 
%0 Journal Article
%A Castro, Ángel
%T Mixing solutions for IPM
%J Journées équations aux dérivées partielles
%Z talk:3
%D 2017
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://archive.numdam.org/articles/10.5802/jedp.653/
%R 10.5802/jedp.653
%G en
%F JEDP_2017____A3_0
Castro, Ángel. Mixing solutions for IPM. Journées équations aux dérivées partielles (2017), Exposé no. 3, 13 p. doi : 10.5802/jedp.653. http://archive.numdam.org/articles/10.5802/jedp.653/

[1] T. Beck, P. Sosoe and P. Wong, Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems. J. Differ. Equations 256, no. 1, 206-222, 2014.

[2] A. C. Bronzi, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Wild solutions for 2D incompressible ideal flow with passive tracer. Commun. Math. Sci. 13, no. 5, 1333–1343 (2015).

[3] T. Buckmaster, C. De Lellis, P. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Holder Euler flows. Ann. of Math. 182, 127–172 (2015).

[4] Á. Castro, D. Córodoba and D. Faraco, Mixing solutions for the Muskat problem. ArXiv:1605.04822

[5] Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with application to water waves. Ann. of Math. 175 , 909–948 (2012).

[6] E. Chiodaroli, A counterexample to well-posedeness of entropy solutions to the compressible Euler system. J. Hyperbol. Differ. Eq. 11, 493-519 (2014).

[7] E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68, 1157–1190 (2015).

[8] E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas. Annales IHP-ANL 32, 225–243 (2015).

[9] E. Chiodaroli, O. Kreml, On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System. Arch. Ration. Mech. Anal. 214, 1019-1049 (2014).

[10] A. Choffrut, h-Principles for the Incompressible Euler Equations. Arch. Rational Mech. Anal. 210, no. 1, 133–163 (2013).

[11] P. Constantin, D. Córdoba, F. Gancedo, L. Rodriguez-Piazza and R. M. Strain, On the Muskat problem: global in time results in 2D and 3D. ArXiv:1310.0953, (2014).

[12] P. Constantin, D. Córdoba, F. Gancedo and R. M. Strain, On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201-227, (2013).

[13] P. Constantin, F. Gancedo, V. Vicol and R. Shvydkoy, Global regularity for 2D Muskat equation with finite slop. ArXiv: 150701386, (2015).

[14] A. Córdoba, D. Córdoba and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. 173, no. 1, 477-542, (2011).

[15] D. Córdoba, D. Faraco, and F. Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200, no. 3, 725–746 (2011).

[16] D. Córdoba and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273, no. 2, 445–471 (2007).

[17] C. H. A. Cheng, R. Granero-Belinchón and S. Shkoller, Well-possednes of the Muskat problem with H 2 -inital data. Adv. Math. 286, 32–104 (2016).

[18] S. Daneri, Cauchy Problem for Dissipative Holder Solutions to the Incompressible Euler Equations. Comm. Math. Phys. 329, no. 2, 745–786 (2014).

[19] H. Darcy, Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris, 1856.

[20] C. De Lellis and L. Székelyhidi Jr, The Euler equations as a differential inclusion. Ann. of Math. 170, 1417–1436 (2009).

[21] C. De Lellis and L. Székelyhidi Jr, On Admissibility Criteria for Weak Solutions of the Euler Equations. Arch. Rational Mech. Anal. 195, 225–260 (2010).

[22] C. De Lellis and L. Székelyhidi Jr, The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.) 49, no. 3, 347–375 (2012).

[23] C. De Lellis and L. Székelyhidi Jr, Dissipative continuous Euler flows. Invent. Math. 193, no. 2, 377–407 (2013).

[24] C. De Lellis and L. Székelyhidi Jr, Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. 16, no. 7, 1467–1505 (2014).

[25] F. Clemens and L. Székelyhidi Jr, Piecewise constant subsolutions for the Muskat problem. ArXiv:1709.05155.

[26] F. Gancedo, A survey for the Muskat problem and a new estimate. SeMA J. 74, no. 1, 21–35, (2017).

[27] I. L. Hwang, The L 2 -Boundedness of Pseudodifferential Operators. Trans. Amer. Math. Soc., 302, 1, 55–76, (1987).

[28] P. Isett and V. Vicol, Holder continuous solutions of active scalar equations. Ann. of PDE 1, no. 1, 1-77 (2015).

[29] B. Kirchheim, Rigidity and Geometry of Microstructures. Habilitation thesis, University of Leipzig, 2003.

[30] B. Kirchheim, S. Müller and V. Šverák, Studying nonlinear PDE by geometry in matrix space. Geometric analysis and nonlinear partial differential equations, 347–395.

[31] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. 157, 715–742 (2003).

[32] F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52, no. 7, 873–915 (1999).

[33] K. Seonghak and Y. Baisheng, Convex integration and infinitely many weak solutions to the Perona-Malik equation in all dimensions. SIAM J. Math. Anal. 47, no. 4, 2770–2794 (2015).

[34] R. Shvydkoy, Convex integration for a class of active scalar equations. J. Amer. Math. Soc. 24, 1159–1174 (2011).

[35] M. Siegel, R. Caflisch and S. Howison, Global existence, singular solutions and and ill-posedness for the Musakt Problem. Comm. Pure and Appl. Math. 57, 1374-1411, (2004).

[36] L. Székelyhidi Jr., Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45, no. 3, 491–509 (2012).

[37] L. Székelyhidi Jr., Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Math. Acad. Sci. Paris 349, no. 19-20, 1063–1066 (2011).

[38] L. Székelyhidi Jr and E. Wiedemann, Young measures generated by ideal incompressible fluid flows. Arch. Rational Mech. Anal. 206, no. 1, 333–366 (2012).

[39] L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process. E. Sanchez-Palencia (Ed.), Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin (1980), pp. 368-377.

Cité par Sources :