Characterizing smooth affine spherical varieties via the automorphism group
Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 379-414.

Let G be a connected reductive algebraic group. We prove that for a quasi-affine G-spherical variety the weight monoid is determined by the weights of its non-trivial 𝔾 a -actions that are homogeneous with respect to a Borel subgroup of G. As an application we get that a smooth affine spherical variety that is non-isomorphic to a torus is determined by its automorphism group (considered as an ind-group) inside the category of smooth affine irreducible varieties.

Soit G un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété G-sphérique quasi-affine est déterminé par les poids de ses 𝔾 a -actions non triviales homogènes sous l’action d’un sous-groupe de Borel de G. Comme application, nous obtenons qu’une variété sphérique affine lisse non isomorphe à un tore est déterminée par son groupe des automorphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles affines lisses.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.149
Classification: 14R20, 14M27, 14J50, 22F50
Keywords: Automorphism groups of quasi-affine varieties, quasi-affine spherical varieties, root subgroups, quasi-affine toric varieties
Mot clés : Groupes des automorphismes des variétés quasi-affines, variétés sphériques quasi-affines, sous-groupes de racines, variétés toriques quasi-affines
Regeta, Andriy 1; van Santen, Immanuel 2

1 Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena Ernst-Abbe-Platz 2, DE-07743 Jena, Germany
2 Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
@article{JEP_2021__8__379_0,
     author = {Regeta, Andriy and van Santen, Immanuel},
     title = {Characterizing smooth affine spherical varieties via the automorphism group},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {379--414},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.149},
     mrnumber = {4218162},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jep.149/}
}
TY  - JOUR
AU  - Regeta, Andriy
AU  - van Santen, Immanuel
TI  - Characterizing smooth affine spherical varieties via the automorphism group
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 379
EP  - 414
VL  - 8
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/articles/10.5802/jep.149/
DO  - 10.5802/jep.149
LA  - en
ID  - JEP_2021__8__379_0
ER  - 
%0 Journal Article
%A Regeta, Andriy
%A van Santen, Immanuel
%T Characterizing smooth affine spherical varieties via the automorphism group
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 379-414
%V 8
%I Ecole polytechnique
%U http://archive.numdam.org/articles/10.5802/jep.149/
%R 10.5802/jep.149
%G en
%F JEP_2021__8__379_0
Regeta, Andriy; van Santen, Immanuel. Characterizing smooth affine spherical varieties via the automorphism group. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 379-414. doi : 10.5802/jep.149. http://archive.numdam.org/articles/10.5802/jep.149/

[AG10] Arzhantsev, I. V.; Gaĭfullin, S. A. Cox rings, semigroups, and automorphisms of affine varieties, Mat. Sb. (N.S.), Volume 201 (2010) no. 1, pp. 3-24 | DOI | MR | Zbl

[AT03] Auslender, Alfred; Teboulle, Marc Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Math., Springer-Verlag, New York, 2003 | Zbl

[BCF10] Bravi, Paolo; Cupit-Foutou, Stéphanie Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble), Volume 60 (2010) no. 2, pp. 641-681 | DOI | Numdam | MR | Zbl

[Ber03] Berchtold, Florian Lifting of morphisms to quotient presentations, Manuscripta Math., Volume 110 (2003) no. 1, pp. 33-44 | DOI | MR | Zbl

[BP05] Bravi, Paolo; Pezzini, Guido Wonderful varieties of type D, Represent. Theory, Volume 9 (2005), pp. 578-637 | DOI | MR | Zbl

[Bra07] Bravi, Paolo Wonderful varieties of type E, Represent. Theory, Volume 11 (2007), pp. 174-191 | DOI | MR | Zbl

[Bri10] Brion, Michel Introduction to actions of algebraic groups, Actions hamiltoniennes: invariants et classification, Volume 1, Centre Mersenne, Grenoble, 2010, pp. 1-22 (https://ccirm.centre-mersenne.org/volume/CCIRM_2010__1/) | Zbl

[CF14] Cupit-Foutou, S. Wonderful varieties: a geometrical realization, 2014 | arXiv

[CLS11] Cox, David A.; Little, John B.; Schenck, Henry K. Toric varieties, Graduate Studies in Math., 124, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl

[CRX19] Cantat, Serge; Regeta, Andriy; Xie, Junyi Families of commuting automorphisms, and a characterization of the affine space, 2019 | arXiv

[Dem70] Demazure, Michel Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4), Volume 3 (1970), pp. 507-588 | DOI | Numdam | Zbl

[FK] Furter, Jean-Philippe; Kraft, Hanspeter On the geometry of the automorphism groups of affine varieties | arXiv

[Fre17] Freudenburg, Gene Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, Springer-Verlag, Berlin, 2017 | DOI | MR | Zbl

[Ful93] Fulton, William Introduction to toric varieties, Annals of Math. Studies, 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl

[Gro61] Grothendieck, Alexander Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci., Volume 8 (1961), pp. 1-222 | Numdam

[Gro97] Grosshans, Frank D. Algebraic homogeneous spaces and invariant theory, Lect. Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[Hum75] Humphreys, James E. Linear algebraic groups, Graduate Texts in Math., 21, Springer-Verlag, New York-Heidelberg, 1975, xiv+247 pages | MR | Zbl

[Kal05] Kaliman, Shulim On a theorem of Ax, Proc. Amer. Math. Soc., Volume 133 (2005) no. 4, pp. 975-977 | DOI | MR | Zbl

[Kno91] Knop, Friedrich The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras (1991), pp. 225-249 | Zbl

[Kno93] Knop, Friedrich Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | MR | Zbl

[Kra84] Kraft, Hanspeter Geometrische Methoden in der Invariantentheorie, Aspects of Math., D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 | DOI | Zbl

[Kra17] Kraft, Hanspeter Automorphism groups of affine varieties and a characterization of affine n-space, Trans. Moscow Math. Soc., Volume 78 (2017), pp. 171-186 | DOI | MR | Zbl

[KRvS19] Kraft, Hanspeter; Regeta, Andriy; van Santen, Immanuel Is the affine space determined by its automorphism group?, Internat. Math. Res. Notices (2019), rny281, 21 pages | DOI | Zbl

[Lie10] Liendo, Alvaro Affine 𝕋-varieties of complexity one and locally nilpotent derivations, Transform. Groups, Volume 15 (2010) no. 2, pp. 389-425 | DOI | MR | Zbl

[Los09a] Losev, Ivan V. Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 3, pp. 1105-1134 | DOI | Numdam | MR | Zbl

[Los09b] Losev, Ivan V. Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl

[LRU19] Liendo, Alvaro; Regeta, Andriy; Urech, Christian Characterization of affine surfaces with a torus action by their automorphism groups, 2019 | arXiv

[Lun01] Luna, D. Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. (2001) no. 94, pp. 161-226 | DOI | Numdam | MR | Zbl

[Lun07] Luna, D. La variété magnifique modèle, J. Algebra, Volume 313 (2007) no. 1, pp. 292-319 | DOI | MR | Zbl

[LV83] Luna, D.; Vust, Th. Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl

[Ram64] Ramanujam, C. P. A note on automorphism groups of algebraic varieties, Math. Ann., Volume 156 (1964), pp. 25-33 | DOI | MR | Zbl

[Reg17] Regeta, Andriy Characterization of n-dimensional normal affine SL n -varieties, 2017 | arXiv

[Ros56] Rosenlicht, Maxwell Some basic theorems on algebraic groups, Amer. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR | Zbl

[Sha94] Algebraic geometry. IV (Shafarevich, I. R., ed.), Encyclopaedia of Math. Sciences, 55, Springer-Verlag, Berlin, 1994 | DOI | MR

[Tim11] Timashev, Dmitry A. Homogeneous spaces and equivariant embeddings, Encyclopaedia of Math. Sciences, 138, Springer, Heidelberg, 2011 | DOI | MR | Zbl

Cited by Sources: