Let be a connected reductive algebraic group. We prove that for a quasi-affine -spherical variety the weight monoid is determined by the weights of its non-trivial -actions that are homogeneous with respect to a Borel subgroup of . As an application we get that a smooth affine spherical variety that is non-isomorphic to a torus is determined by its automorphism group (considered as an ind-group) inside the category of smooth affine irreducible varieties.
Soit un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété -sphérique quasi-affine est déterminé par les poids de ses -actions non triviales homogènes sous l’action d’un sous-groupe de Borel de . Comme application, nous obtenons qu’une variété sphérique affine lisse non isomorphe à un tore est déterminée par son groupe des automorphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles affines lisses.
Accepted:
Published online:
DOI: 10.5802/jep.149
Keywords: Automorphism groups of quasi-affine varieties, quasi-affine spherical varieties, root subgroups, quasi-affine toric varieties
Mot clés : Groupes des automorphismes des variétés quasi-affines, variétés sphériques quasi-affines, sous-groupes de racines, variétés toriques quasi-affines
@article{JEP_2021__8__379_0, author = {Regeta, Andriy and van Santen, Immanuel}, title = {Characterizing smooth affine spherical varieties via the automorphism group}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {379--414}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.149}, mrnumber = {4218162}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jep.149/} }
TY - JOUR AU - Regeta, Andriy AU - van Santen, Immanuel TI - Characterizing smooth affine spherical varieties via the automorphism group JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 379 EP - 414 VL - 8 PB - Ecole polytechnique UR - http://archive.numdam.org/articles/10.5802/jep.149/ DO - 10.5802/jep.149 LA - en ID - JEP_2021__8__379_0 ER -
%0 Journal Article %A Regeta, Andriy %A van Santen, Immanuel %T Characterizing smooth affine spherical varieties via the automorphism group %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 379-414 %V 8 %I Ecole polytechnique %U http://archive.numdam.org/articles/10.5802/jep.149/ %R 10.5802/jep.149 %G en %F JEP_2021__8__379_0
Regeta, Andriy; van Santen, Immanuel. Characterizing smooth affine spherical varieties via the automorphism group. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 379-414. doi : 10.5802/jep.149. http://archive.numdam.org/articles/10.5802/jep.149/
[AG10] Cox rings, semigroups, and automorphisms of affine varieties, Mat. Sb. (N.S.), Volume 201 (2010) no. 1, pp. 3-24 | DOI | MR | Zbl
[AT03] Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Math., Springer-Verlag, New York, 2003 | Zbl
[BCF10] Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble), Volume 60 (2010) no. 2, pp. 641-681 | DOI | Numdam | MR | Zbl
[Ber03] Lifting of morphisms to quotient presentations, Manuscripta Math., Volume 110 (2003) no. 1, pp. 33-44 | DOI | MR | Zbl
[BP05] Wonderful varieties of type , Represent. Theory, Volume 9 (2005), pp. 578-637 | DOI | MR | Zbl
[Bra07] Wonderful varieties of type , Represent. Theory, Volume 11 (2007), pp. 174-191 | DOI | MR | Zbl
[Bri10] Introduction to actions of algebraic groups, Actions hamiltoniennes: invariants et classification, Volume 1, Centre Mersenne, Grenoble, 2010, pp. 1-22 (https://ccirm.centre-mersenne.org/volume/CCIRM_2010__1/) | Zbl
[CF14] Wonderful varieties: a geometrical realization, 2014 | arXiv
[CLS11] Toric varieties, Graduate Studies in Math., 124, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[CRX19] Families of commuting automorphisms, and a characterization of the affine space, 2019 | arXiv
[Dem70] Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4), Volume 3 (1970), pp. 507-588 | DOI | Numdam | Zbl
[FK] On the geometry of the automorphism groups of affine varieties | arXiv
[Fre17] Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, Springer-Verlag, Berlin, 2017 | DOI | MR | Zbl
[Ful93] Introduction to toric varieties, Annals of Math. Studies, 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl
[Gro61] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci., Volume 8 (1961), pp. 1-222 | Numdam
[Gro97] Algebraic homogeneous spaces and invariant theory, Lect. Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[Hum75] Linear algebraic groups, Graduate Texts in Math., 21, Springer-Verlag, New York-Heidelberg, 1975, xiv+247 pages | MR | Zbl
[Kal05] On a theorem of Ax, Proc. Amer. Math. Soc., Volume 133 (2005) no. 4, pp. 975-977 | DOI | MR | Zbl
[Kno91] The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras (1991), pp. 225-249 | Zbl
[Kno93] Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | MR | Zbl
[Kra84] Geometrische Methoden in der Invariantentheorie, Aspects of Math., D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 | DOI | Zbl
[Kra17] Automorphism groups of affine varieties and a characterization of affine -space, Trans. Moscow Math. Soc., Volume 78 (2017), pp. 171-186 | DOI | MR | Zbl
[KRvS19] Is the affine space determined by its automorphism group?, Internat. Math. Res. Notices (2019), rny281, 21 pages | DOI | Zbl
[Lie10] Affine -varieties of complexity one and locally nilpotent derivations, Transform. Groups, Volume 15 (2010) no. 2, pp. 389-425 | DOI | MR | Zbl
[Los09a] Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 3, pp. 1105-1134 | DOI | Numdam | MR | Zbl
[Los09b] Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl
[LRU19] Characterization of affine surfaces with a torus action by their automorphism groups, 2019 | arXiv
[Lun01] Variétés sphériques de type , Publ. Math. Inst. Hautes Études Sci. (2001) no. 94, pp. 161-226 | DOI | Numdam | MR | Zbl
[Lun07] La variété magnifique modèle, J. Algebra, Volume 313 (2007) no. 1, pp. 292-319 | DOI | MR | Zbl
[LV83] Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl
[Ram64] A note on automorphism groups of algebraic varieties, Math. Ann., Volume 156 (1964), pp. 25-33 | DOI | MR | Zbl
[Reg17] Characterization of -dimensional normal affine -varieties, 2017 | arXiv
[Ros56] Some basic theorems on algebraic groups, Amer. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR | Zbl
[Sha94] Algebraic geometry. IV (Shafarevich, I. R., ed.), Encyclopaedia of Math. Sciences, 55, Springer-Verlag, Berlin, 1994 | DOI | MR
[Tim11] Homogeneous spaces and equivariant embeddings, Encyclopaedia of Math. Sciences, 138, Springer, Heidelberg, 2011 | DOI | MR | Zbl
Cited by Sources: