The Leray-Gårding method for finite difference schemes
[La méthode de Leray et Gårding pour les schémas aux différences finies]
Journal de l’École polytechnique — Mathématiques, Tome 2 (2015) , pp. 297-331.

Dans les années 1950, Leray et Gårding ont développé une technique de multiplicateur pour obtenir des estimations a priori de solutions d’équations hyperboliques scalaires. L’existence d’un multiplicateur est le point de départ du travail de Rauch  pour montrer des estimations de semi-groupe pour les problèmes aux limites hyperboliques. Dans cet article, nous expliquons comment cette technique de multiplicateur peut être adaptée au cadre des schémas aux différences finies pour les équations de transport. Ce travail s’applique à des schémas numériques multi-pas en temps. L’existence et les propriétés du multiplicateur nous permettent d’obtenir des estimations de semi-groupe optimales pour des versions totalement discrètes des problèmes aux limites hyperboliques.

In the fifties, Leray and Gårding have developed a multiplier technique for deriving a priori estimates for solutions to scalar hyperbolic equations. The existence of such a multiplier is the starting point of the argument by Rauch  for the derivation of semigroup estimates for hyperbolic initial boundary value problems. In this article, we explain how this multiplier technique can be adapted to the framework of finite difference approximations of transport equations. The technique applies to numerical schemes with arbitrarily many time levels. The existence and properties of the multiplier enable us to derive optimal semigroup estimates for fully discrete hyperbolic initial boundary value problems.

DOI : https://doi.org/10.5802/jep.25
Classification : 65M06,  65M12,  35L03,  35L04
Mots clés : Équations hyperboliques, différences finies, stabilité, conditions aux limites, semi-groupe
@article{JEP_2015__2__297_0,
author = {Coulombel, Jean-Fran\c{c}ois},
title = {The Leray-G\r{a}rding method for finite~difference schemes},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {297--331},
publisher = {Ecole polytechnique},
volume = {2},
year = {2015},
doi = {10.5802/jep.25},
language = {en},
url = {http://archive.numdam.org/articles/10.5802/jep.25/}
}
Coulombel, Jean-François. The Leray-Gårding method for finite difference schemes. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015) , pp. 297-331. doi : 10.5802/jep.25. http://archive.numdam.org/articles/10.5802/jep.25/

 Abarbanel, S.; Gottlieb, D. A note on the leap-frog scheme in two and three space dimensions, J. Comput. Phys., Volume 21 (1976) no. 3, pp. 351-355 | MR 416051 | Zbl 0331.65057

 Abarbanel, S.; Gottlieb, D. Stability of two-dimensional initial boundary value problems using leap-frog type schemes, Math. Comp., Volume 33 (1979) no. 148, pp. 1145-1155 | MR 537962 | Zbl 0447.65055

 Benzoni-Gavage, S.; Serre, D. Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007 | MR 2284507 | Zbl 1113.35001

 Coulombel, J.-F. Fully discrete hyperbolic initial boundary value problems with nonzero initial data (to appear in Confluentes Math.)

 Coulombel, J.-F. Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 4, pp. 2844-2871 | MR 2551149 | Zbl 1205.65245

 Coulombel, J.-F. Stability of finite difference schemes for hyperbolic initial boundary value problems, HCDTE lecture notes. Part I. Nonlinear hyperbolic PDEs, dispersive and transport equations (AIMS Ser. Appl. Math.), Volume 6, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013, pp. 146 | MR 3340992 | Zbl 1284.65116

 Coulombel, J.-F.; Gloria, A. Semigroup stability of finite difference schemes for multidimensional hyperbolic initial boundary value problems, Math. Comp., Volume 80 (2011) no. 273, pp. 165-203 | MR 2728976

 Emmrich, E. Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator, BIT, Volume 49 (2009) no. 2, pp. 297-323 | MR 2507603 | Zbl 1172.65026

 Emmrich, E. Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations, Comput. Methods Math., Volume 9 (2009) no. 1, pp. 37-62 | MR 2641310 | Zbl 1169.65046

 Gårding, L. Solution directe du problème de Cauchy pour les équations hyperboliques, La théorie des équations aux dérivées partielles (Colloques Internationaux du C.N.R.S.), C.N.R.S., Paris, 1956, pp. 71-90 | Zbl 0075.09703

 Goldberg, M.; Tadmor, E. Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II, Math. Comp., Volume 36 (1981) no. 154, pp. 603-626 | MR 606519 | Zbl 0466.65054

 Gustafsson, B.; Kreiss, H.-O.; Oliger, J. Time dependent problems and difference methods, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1995, pp. xii+642 | MR 1377057 | Zbl 1275.65048

 Gustafsson, B.; Kreiss, H.-O.; Sundström, A. Stability theory of difference approximations for mixed initial boundary value problems. II, Math. Comp., Volume 26 (1972) no. 119, pp. 649-686 | MR 341888 | Zbl 0293.65076

 Hairer, E.; Nørsett, S. P.; Wanner, G. Solving ordinary differential equations I. Nonstiff problems, Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993, pp. xvi+528 | MR 1227985 | Zbl 0789.65048

 Hairer, E.; Wanner, G. Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1996, pp. xvi+614 | Article | MR 1439506 | Zbl 0729.65051

 Kreiss, H.-O. Stability theory for difference approximations of mixed initial boundary value problems. I, Math. Comp., Volume 22 (1968), pp. 703-714 | MR 241010 | Zbl 0197.13704

 Kreiss, H.-O.; Wu, L. On the stability definition of difference approximations for the initial-boundary value problem, Appl. Numer. Math., Volume 12 (1993) no. 1-3, pp. 213-227 | MR 1227187 | Zbl 0782.65119

 Leray, J. Hyperbolic differential equations, The Institute for Advanced Study, Princeton, N.J., 1953, pp. 238 | MR 63548

 Michelson, D. Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comp., Volume 40 (1983) no. 161, pp. 1-45 | MR 679433 | Zbl 0563.65064

 Oliger, J. Fourth order difference methods for the initial boundary-value problem for hyperbolic equations, Math. Comp., Volume 28 (1974), pp. 15-25 | MR 359344 | Zbl 0284.65074

 Osher, S. Stability of difference approximations of dissipative type for mixed initial boundary value problems. I, Math. Comp., Volume 23 (1969), pp. 335-340 | MR 246530 | Zbl 0177.20403

 Osher, S. Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Math. Soc., Volume 137 (1969), pp. 177-201 | MR 237982 | Zbl 0174.41701

 Rauch, J. ${ℒ}^{2}$ is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math., Volume 25 (1972), pp. 265-285 | MR 298232 | Zbl 0226.35056

 Richtmyer, R. D.; Morton, K. W. Difference methods for initial-value problems. Theory and applications, Interscience Tracts in Pure and Applied Mathematics, 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967, pp. xiv+405 | MR 220455 | Zbl 0155.47502

 Sloan, D. M. Boundary conditions for a fourth order hyperbolic difference scheme, Math. Comp., Volume 41 (1983), pp. 1-11 | MR 701620 | Zbl 0536.65077

 Strikwerda, J. C.; Wade, B. A. A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994) (Banach Center Publ.), Volume 38, Polish Acad. Sci., Warsaw, 1997, pp. 339-360 | MR 1457017 | Zbl 0877.15029

 Thomas, J. M. Discrétisation des conditions aux limites dans les schémas saute-mouton, ESAIM Math. Model. Numer. Anal., Volume 6 (1972) no. R-2, pp. 31-44 | Numdam | MR 395251

 Trefethen, L. N. Instability of difference models for hyperbolic initial boundary value problems, Comm. Pure Appl. Math., Volume 37 (1984), pp. 329-367 | MR 739924 | Zbl 0575.65095

 Trefethen, L. N.; Embree, M. Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, N.J., 2005 | MR 2155029 | Zbl 1085.15009

 Wade, B. A. Symmetrizable finite difference operators, Math. Comp., Volume 54 (1990) no. 190, pp. 525-543 | MR 1011447 | Zbl 0697.65069

 Wu, L. The semigroup stability of the difference approximations for initial-boundary value problems, Math. Comp., Volume 64 (1995) no. 209, pp. 71-88 | MR 1257582 | Zbl 0820.65053