By using the probabilistic approach in arithmetic geometry, one gives a new proof of the Hodge index inequality for adelic -divisors, and proposes a new way of generalizing it to higher dimensional case.
En utilisant l’approche probabiliste en géométrie arithmétique, nous donnons une nouvelle démonstration de l’inégalité d’indice de Hodge pour les -diviseurs adéliques, et nous proposons une nouvelle voie pour sa généralisation au cas de dimension supérieure.
Accepted:
Published online:
DOI: 10.5802/jep.33
Mot clés : Inégalité d’indice de Hodge, géométrie d’Arakelov, diviseur adélique, corps d’Okounkov, système linéaire gradué, $\mathbb{R}$-filtration
Keywords: Hodge index inequality, Arakelov geometry, adelic divisor, Okounkov body, graded linear series, $\mathbb{R}$-filtration
@article{JEP_2016__3__231_0, author = {Chen, Huayi}, title = {In\'egalit\'e d{\textquoteright}indice de {Hodge} en g\'eom\'etrie et arithm\'etique~: une approche probabiliste}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {231--262}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.33}, mrnumber = {3522823}, zbl = {06670707}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/jep.33/} }
TY - JOUR AU - Chen, Huayi TI - Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste JO - Journal de l’École polytechnique — Mathématiques PY - 2016 SP - 231 EP - 262 VL - 3 PB - ole polytechnique UR - http://archive.numdam.org/articles/10.5802/jep.33/ DO - 10.5802/jep.33 LA - fr ID - JEP_2016__3__231_0 ER -
%0 Journal Article %A Chen, Huayi %T Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste %J Journal de l’École polytechnique — Mathématiques %D 2016 %P 231-262 %V 3 %I ole polytechnique %U http://archive.numdam.org/articles/10.5802/jep.33/ %R 10.5802/jep.33 %G fr %F JEP_2016__3__231_0
Chen, Huayi. Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste. Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 231-262. doi : 10.5802/jep.33. http://archive.numdam.org/articles/10.5802/jep.33/
[1] Probabilité, Collection Enseignement Sup Mathématiques, 33, EDP Sciences, Les Ulis, 2007, v+241 pages | Zbl
[2] Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, R.I., 1990, x+169 pages | MR | Zbl
[3] Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, J. Functional Analysis, Volume 262 (2012) no. 7, pp. 3309-3339 | DOI | MR | Zbl
[4] Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 2, pp. 241-312 | DOI | Numdam | MR | Zbl
[5] Okounkov bodies of filtered linear series, Compositio Math., Volume 147 (2011) no. 4, pp. 1205-1229 | DOI | MR | Zbl
[6] Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, Paris, 2014, vi+222 pages | Zbl
[7] Arithmetic Fujita approximation, Ann. Sci. École Norm. Sup. (4), Volume 43 (2010) no. 4, pp. 555-578 | DOI | Numdam | MR | Zbl
[8] Géométrie d’Arakelov : théorèmes de limite et comptage des points rationnels, Université Paris Diderot (2011) (Mémoire d’habilitation à diriger des recherches)
[9] Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique, Math. Z., Volume 279 (2015) no. 1-2, pp. 99-137 | DOI | Zbl
[10] On the maximum entropy of the sum of two dependent random variables, IEEE Trans. Information Theory, Volume 40 (1994) no. 4, pp. 1244-1246 | DOI | MR | Zbl
[11] Asymptotic multiplicities of graded families of ideals and linear series, Advances in Math., Volume 264 (2014), pp. 55-113 | DOI | MR | Zbl
[12] Probabilités et potentiel, Hermann, Paris, 1975, x+291 pages (Chap. I à IV)
[13] Espaces analytiques -adiques au sens de Berkovich, Séminaire Bourbaki. Vol. 2005/06 (Astérisque), Volume 311, Société Mathématique de France, Paris, 2007, pp. 137-176 (Exp. No. 958) | Numdam | Zbl
[14] The geometry of syzygies, Graduate Texts in Math., 229, Springer-Verlag, New York, 2005, xvi+243 pages | MR
[15] Calculus on arithmetic surfaces, Ann. of Math. (2), Volume 119 (1984) no. 2, pp. 387-424 | DOI | MR | Zbl
[16] Approximating Zariski decomposition of big line bundles, Kodai Math. J., Volume 17 (1994) no. 1, pp. 1-3 | DOI | MR | Zbl
[17] Geometric methods and applications, Texts in Appl. Math., 38, Springer, New York, 2011, xxviii+680 pages | MR
[18] Pentes de fibrés vectoriels adéliques sur un corps global, Rend. Sem. Mat. Univ. Padova, Volume 119 (2008), pp. 21-95 | DOI | Zbl
[19] On the number of lattice points in convex symmetric bodies and their duals, Israel J. Math., Volume 74 (1991) no. 2-3, pp. 347-357 | DOI | MR | Zbl
[20] Heights and Arakelov’s intersection theory, Amer. J. Math., Volume 107 (1985) no. 1, pp. 23-38 | DOI | MR | Zbl
[21] Boundedness of the successive minima on arithmetic varieties, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 249-302 | MR | Zbl
[22] Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2), Volume 176 (2012) no. 2, pp. 925-978 | DOI | MR | Zbl
[23] Some remarks on the arithmetic Hodge index conjecture, Compositio Math., Volume 99 (1995) no. 2, pp. 109-128 | Numdam | MR | Zbl
[24] Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | MR
[25] Convex bodies associated to linear series, Ann. Sci. École Norm. Sup. (4), Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl
[26] Riemann-Roch type inequalities for nef and big divisors, Amer. J. Math., Volume 111 (1989) no. 3, pp. 457-487 | DOI | MR | Zbl
[27] Hodge index theorem for arithmetic cycles of codimension one, Math. Res. Lett., Volume 3 (1996) no. 2, pp. 173-183 | DOI | MR | Zbl
[28] Adelic divisors on arithmetic varieties, Mem. Amer. Math. Soc., 242, no. 1144, American Mathematical Society, Providence, R.I., 2016 | Zbl
[29] Brunn-Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | MR | Zbl
[30] Convex bodies associated with a given convex body, J. London Math. Soc. (2), Volume 33 (1958), pp. 270-281 | DOI | MR | Zbl
[31] An absolute Siegel’s lemma, J. reine angew. Math., Volume 476 (1996), pp. 1-26 | MR | Zbl
[32] A mathematical theory of communication, AT&T Bell Labs. Tech. J., Volume 27 (1948), p. 379-423, 623–656 | MR | Zbl
[33] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control, Volume 2 (1959), pp. 101-112 | DOI | MR | Zbl
[34] Fujita’s approximation theorem in positive characteristics, J. Math. Kyoto Univ., Volume 47 (2007) no. 1, pp. 179-202 | DOI | MR | Zbl
[35] An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma, J. reine angew. Math., Volume 475 (1996), pp. 167-185 | MR | Zbl
[36] Lectures on measure theory, Lect. series Chinese Acad. Sci., Science Press, Beijing, 2004, ix+289 pages
[37] On volumes of arithmetic line bundles, Compositio Math., Volume 145 (2009) no. 6, pp. 1447-1464 | DOI | MR | Zbl
[38] Algebraic dynamics, canonical heights and Arakelov geometry, Fifth International Congress of Chinese Mathematicians (AMS/IP Stud. Adv. Math.), Volume 51, 2e partie, American Mathematical Society, Providence, R.I., 2012, pp. 893-929 | Zbl
[39] The arithmetic Hodge index theorem for adelic line bundles I : number fields, Math. Ann. (2016) (online, arXiv :1304.3538)
[40] Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl
Cited by Sources: