Nous étudions les arbres aléatoires dont la loi est invariante par la contraction indépendante de leurs arêtes avec probabilité
We study random trees which are invariant in law under the operation of contracting each edge independently with probability
Accepté le :
Publié le :
DOI : 10.5802/jep.36
Keywords: Random tree, self-similar processes, Gromov-Hausdorff-Prokhorov topology
Mot clés : Arbres aléatoires, processus autosimilaires, topologie de Gromov-Hausdorff-Prokhorov
@article{JEP_2016__3__365_0, author = {H\'enard, Olivier and Maillard, Pascal}, title = {On trees invariant under edge contraction}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {365--400}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.36}, mrnumber = {3580038}, zbl = {1364.60105}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.36/} }
TY - JOUR AU - Hénard, Olivier AU - Maillard, Pascal TI - On trees invariant under edge contraction JO - Journal de l’École polytechnique - Mathématiques PY - 2016 SP - 365 EP - 400 VL - 3 PB - ole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.36/ DO - 10.5802/jep.36 LA - en ID - JEP_2016__3__365_0 ER -
Hénard, Olivier; Maillard, Pascal. On trees invariant under edge contraction. Journal de l’École polytechnique - Mathématiques, Tome 3 (2016), pp. 365-400. doi : 10.5802/jep.36. https://www.numdam.org/articles/10.5802/jep.36/
[ADH13] A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. Comm. Probab., Volume 18 (2013) no. 14, pp. 1-21 | MR | Zbl
[Ald93] The continuum random tree III, Ann. Probability, Volume 21 (1993) no. 1, pp. 248-289 | MR | Zbl
[ALW16] The gap between Gromov-vague and Gromov–Hausdorff-vague topology, Stochastic Processes Appl., Volume 126 (2016) no. 9, pp. 2527-2553 | DOI | MR | Zbl
[AP98] Tree-valued Markov chains derived from Galton-Watson processes, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998) no. 5, pp. 637-686 | DOI | Numdam | MR | Zbl
[Dre84] Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Advances in Math., Volume 53 (1984) no. 3, pp. 321-402 | MR | Zbl
[Drm09] Random trees, SpringerWienNewYork, Vienna, 2009 | DOI
[Dug66] Topology, Allyn and Bacon, Inc., Boston, 1966 | Zbl
[EPW06] Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields, Volume 134 (2006) no. 1, pp. 81-126 | DOI | MR | Zbl
[Eva08] Probability and real trees, Lect. Notes in Math., 1920, Springer, Berlin, 2008 | MR
[FHP11] A representation of exchangeable hierarchies by sampling from real trees (2011) (arXiv:1101.5619)
[FS09] Analytic combinatorics, Cambridge University Press, Cambridge, 2009 | DOI | Zbl
[GPW09] Convergence in distribution of random metric measure spaces (
[Gro07] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007
[HBS65] Long-term storage: an experimental study, Constable, London, 1965
[Jan11] Poset limits and exchangeable random posets, Combinatorica, Volume 31 (2011) no. 5, pp. 529-563 | DOI | MR | Zbl
[LS06] Limits of dense graph sequences, J. Combinatorial Theory Ser. B, Volume 96 (2006) no. 6, pp. 933-957 | DOI | MR | Zbl
[Maiar] The
[MVN68] Fractional Brownian motions, fractional noises and applications, SIAM Rev., Volume 10 (1968) no. 4, pp. 422-437 | DOI | MR | Zbl
[OV85] Self-Similar Processes with Stationary Increments Generated by Point Processes, Ann. Probability, Volume 13 (1985) no. 1, pp. 28-52 | MR | Zbl
[Rém85] Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération aléatoire, RAIRO Inform. Théor., Volume 19 (1985) no. 2, pp. 179-195 | Zbl
[Sta97] Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[Ver85] Sample Path Properties of Self-Similar Processes with Stationary Increments, Ann. Probability, Volume 13 (1985) no. 1, pp. 1-27 | MR | Zbl
Cité par Sources :