We study random trees which are invariant in law under the operation of contracting each edge independently with probability . We show that all such trees can be constructed through Poisson sampling from a certain class of random measured -trees satisfying a natural scale invariance property. This has connections to exchangeable partially ordered sets, real-valued self-similar increasing processes and quasi-stationary distributions of Galton–Watson processes.
Nous étudions les arbres aléatoires dont la loi est invariante par la contraction indépendante de leurs arêtes avec probabilité . Nous montrons que ces arbres peuvent être construits par échantillonnage poissonnien à partir d’une classe de -arbres aléatoires mesurés qui satisfont à une propriété d’invariance naturelle. Cette étude est liée aux ordres partiels échangeables, aux processus autosimilaires croissants à valeurs réelles et aux distributions quasi-stationnaires de processus de Galton-Watson.
Accepted:
Published online:
DOI: 10.5802/jep.36
Keywords: Random tree, self-similar processes, Gromov-Hausdorff-Prokhorov topology
Mot clés : Arbres aléatoires, processus autosimilaires, topologie de Gromov-Hausdorff-Prokhorov
@article{JEP_2016__3__365_0, author = {H\'enard, Olivier and Maillard, Pascal}, title = {On trees invariant under edge contraction}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {365--400}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.36}, mrnumber = {3580038}, zbl = {1364.60105}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jep.36/} }
TY - JOUR AU - Hénard, Olivier AU - Maillard, Pascal TI - On trees invariant under edge contraction JO - Journal de l’École polytechnique — Mathématiques PY - 2016 SP - 365 EP - 400 VL - 3 PB - ole polytechnique UR - http://archive.numdam.org/articles/10.5802/jep.36/ DO - 10.5802/jep.36 LA - en ID - JEP_2016__3__365_0 ER -
Hénard, Olivier; Maillard, Pascal. On trees invariant under edge contraction. Journal de l’École polytechnique — Mathématiques, Volume 3 (2016), pp. 365-400. doi : 10.5802/jep.36. http://archive.numdam.org/articles/10.5802/jep.36/
[ADH13] A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. Comm. Probab., Volume 18 (2013) no. 14, pp. 1-21 | MR | Zbl
[Ald93] The continuum random tree III, Ann. Probability, Volume 21 (1993) no. 1, pp. 248-289 | MR | Zbl
[ALW16] The gap between Gromov-vague and Gromov–Hausdorff-vague topology, Stochastic Processes Appl., Volume 126 (2016) no. 9, pp. 2527-2553 | DOI | MR | Zbl
[AP98] Tree-valued Markov chains derived from Galton-Watson processes, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998) no. 5, pp. 637-686 | DOI | Numdam | MR | Zbl
[Dre84] Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Advances in Math., Volume 53 (1984) no. 3, pp. 321-402 | MR | Zbl
[Drm09] Random trees, SpringerWienNewYork, Vienna, 2009 | DOI
[Dug66] Topology, Allyn and Bacon, Inc., Boston, 1966 | Zbl
[EPW06] Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields, Volume 134 (2006) no. 1, pp. 81-126 | DOI | MR | Zbl
[Eva08] Probability and real trees, Lect. Notes in Math., 1920, Springer, Berlin, 2008 | MR
[FHP11] A representation of exchangeable hierarchies by sampling from real trees (2011) (arXiv:1101.5619)
[FS09] Analytic combinatorics, Cambridge University Press, Cambridge, 2009 | DOI | Zbl
[GPW09] Convergence in distribution of random metric measure spaces (-coalescent measure trees), Probab. Theory Related Fields, Volume 145 (2009) no. 1-2, pp. 285-322 | DOI | MR | Zbl
[Gro07] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007
[HBS65] Long-term storage: an experimental study, Constable, London, 1965
[Jan11] Poset limits and exchangeable random posets, Combinatorica, Volume 31 (2011) no. 5, pp. 529-563 | DOI | MR | Zbl
[LS06] Limits of dense graph sequences, J. Combinatorial Theory Ser. B, Volume 96 (2006) no. 6, pp. 933-957 | DOI | MR | Zbl
[Maiar] The -invariant measures of subcritical Bienaymé–Galton–Watson processes, Bernoulli (to appear) (arXiv:1508.00845) | MR | Zbl
[MVN68] Fractional Brownian motions, fractional noises and applications, SIAM Rev., Volume 10 (1968) no. 4, pp. 422-437 | DOI | MR | Zbl
[OV85] Self-Similar Processes with Stationary Increments Generated by Point Processes, Ann. Probability, Volume 13 (1985) no. 1, pp. 28-52 | MR | Zbl
[Rém85] Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération aléatoire, RAIRO Inform. Théor., Volume 19 (1985) no. 2, pp. 179-195 | Zbl
[Sta97] Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[Ver85] Sample Path Properties of Self-Similar Processes with Stationary Increments, Ann. Probability, Volume 13 (1985) no. 1, pp. 1-27 | MR | Zbl
Cited by Sources: