Statistical mechanics of the uniform electron gas
[Mécanique statistique pour le gaz uniforme d’électrons]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 79-116.

Dans cet article nous définissons et étudions le gaz uniforme d’électrons, un système comprenant une infinité de particules arrangées de sorte que la densité moyenne soit constante dans tout l’espace. Ceci est en principe différent du Jellium, qui comprend une charge uniforme positive sans aucune contrainte sur la densité des électrons. Nous démontrons que le gaz uniforme d’électrons s’obtient en théorie de la fonctionnelle de la densité, dans la limite où la densité du système varie lentement. Nous construisons également le gaz uniforme quantique et montrons la convergence vers le gaz classique dans le régime de faible densité.

In this paper we define and study the classical Uniform Electron Gas (UEG), a system of infinitely many electrons whose density is constant everywhere in space. The UEG is defined differently from Jellium, which has a positive constant background but no constraint on the density. We prove that the UEG arises in Density Functional Theory in the limit of a slowly varying density, minimizing the indirect Coulomb energy. We also construct the quantum UEG and compare it to the classical UEG at low density.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.64
Classification : 82B03, 81V70, 49K21
Keywords: Uniform electron gas, Density Functional Theory, thermodynamic limit, statistical mechanics, mean-field limit, optimal transport
Mot clés : Gaz uniforme d’électrons, théorie de la fonctionnelle de la densité, limite thermodynamique, mécanique statistique, limites de champ moyen, transport optimal
Lewin, Mathieu 1 ; Lieb, Elliott H. 2 ; Seiringer, Robert 3

1 CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University F-75016 Paris, France
2 Departments of Mathematics and Physics, Jadwin Hall, Princeton University Washington Rd., Princeton, NJ 08544, USA
3 IST Austria (Institute of Science and Technology Austria) Am Campus 1, 3400 Klosterneuburg, Austria
@article{JEP_2018__5__79_0,
     author = {Lewin, Mathieu and Lieb, Elliott H. and Seiringer, Robert},
     title = {Statistical mechanics of the~uniform~electron~gas},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {79--116},
     publisher = {Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.64},
     mrnumber = {3732693},
     zbl = {06988574},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jep.64/}
}
TY  - JOUR
AU  - Lewin, Mathieu
AU  - Lieb, Elliott H.
AU  - Seiringer, Robert
TI  - Statistical mechanics of the uniform electron gas
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 79
EP  - 116
VL  - 5
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/articles/10.5802/jep.64/
DO  - 10.5802/jep.64
LA  - en
ID  - JEP_2018__5__79_0
ER  - 
%0 Journal Article
%A Lewin, Mathieu
%A Lieb, Elliott H.
%A Seiringer, Robert
%T Statistical mechanics of the uniform electron gas
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 79-116
%V 5
%I Ecole polytechnique
%U http://archive.numdam.org/articles/10.5802/jep.64/
%R 10.5802/jep.64
%G en
%F JEP_2018__5__79_0
Lewin, Mathieu; Lieb, Elliott H.; Seiringer, Robert. Statistical mechanics of the uniform electron gas. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 79-116. doi : 10.5802/jep.64. http://archive.numdam.org/articles/10.5802/jep.64/

[1] Aizenman, M.; Martin, P. A. Structure of Gibbs states of one dimensional Coulomb systems, Comm. Math. Phys., Volume 78 (1980) no. 1, pp. 99-116 | MR

[2] Bach, V. Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys., Volume 147 (1992) no. 3, pp. 527-548 | MR | Zbl

[3] Bach, V.; Lieb, E. H.; Solovej, J. P. Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., Volume 76 (1994) no. 1-2, pp. 3-89 | DOI | MR | Zbl

[4] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., Volume 98 (1993) no. 7, pp. 5648-5652 | DOI

[5] Bindini, U.; De Pascale, L. Optimal transport with Coulomb cost and the semiclassical limit of density functional theory, J. Éc. polytech. Math., Volume 4 (2017), pp. 909-934 | DOI | MR

[6] Bishop, R. F.; Lührmann, K. H. Electron correlations. II. Ground-state results at low and metallic densities, Phys. Rev. B, Volume 26 (1982), pp. 5523-5557 | DOI

[7] Blanc, X.; Lewin, M. Existence of the thermodynamic limit for disordered quantum Coulomb systems, J. Math. Phys., Volume 53 (2012) (article no. 095209) | DOI | MR | Zbl

[8] Borwein, D.; Borwein, J. M.; Shail, R. Analysis of certain lattice sums, J. Math. Anal. Appl., Volume 143 (1989) no. 1, pp. 126-137 | DOI | MR | Zbl

[9] Borwein, D.; Borwein, J. M.; Shail, R.; Zucker, I. J. Energy of static electron lattices, J. Phys. A, Volume 21 (1988) no. 7, pp. 1519-1531 | DOI | MR | Zbl

[10] Borwein, D.; Borwein, J. M.; Straub, A. On lattice sums and Wigner limits, J. Math. Anal. Appl., Volume 414 (2014) no. 2, pp. 489-513 | DOI | MR | Zbl

[11] Brascamp, H. J.; Lieb, E. H. Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, Functional Integration and Its Applications (Arthurs, A.M., ed.), Clarendon Press, Oxford, 1975 | Zbl

[12] Brydges, D. C.; Martin, P. A. Coulomb systems at low density: a review, J. Statist. Phys., Volume 96 (1999) no. 5-6, pp. 1163-1330 | DOI | MR | Zbl

[13] Buttazzo, G.; Champion, T.; De Pascale, L. Continuity and estimates for multimarginal optimal transportation problems with singular costs, Appl. Math. Optim. (2017) (doi:10.1007/s00245-017-9403-7) | Zbl

[14] Choquard, P.; Favre, P.; Gruber, C. On the equation of state of classical one-component systems with long-range forces, J. Statist. Phys., Volume 23 (1980), pp. 405-442 | DOI | MR

[15] Colombo, M.; De Pascale, L.; Di Marino, S. Multimarginal optimal transport maps for one-dimensional repulsive costs, Canad. J. Math., Volume 67 (2015), pp. 350-368 | DOI | MR | Zbl

[16] Conlon, J. G.; Lieb, E. H.; Yau, H.-T. The N 7/5 law for charged bosons, Comm. Math. Phys., Volume 116 (1988) no. 3, pp. 417-448 | MR

[17] Cotar, C.; Friesecke, G.; Klüppelberg, C. Density functional theory and optimal transportation with Coulomb cost, Comm. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 548-599 | DOI | MR | Zbl

[18] Cotar, C.; Friesecke, G.; Pass, B. Infinite-body optimal transport with Coulomb cost, Calc. Var. Partial Differential Equations, Volume 54 (2015) no. 1, pp. 717-742 | MR | Zbl

[19] Di Marino, S., 2017 (in preparation)

[20] Di Marino, S.; Gerolin, A.; Nenna, L. Optimal transportation theory with repulsive costs, Topological optimization and optimal transport in the applied sciences (Santambrogio, F.; Champion, T.; Carlier, G.; Rumpf, M.; Oudet, É; Bergounioux, M., eds.) (Radon series on computational and applied mathematics), Volume 17, De Gruyter, 2017, pp. 204-256 | MR

[21] Drummond, N. D.; Radnai, Z.; Trail, J. R.; Towler, M. D.; Needs, R. J. Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals, Phys. Rev. B (2004) (article no. 085116) | DOI

[22] Fisher, M. E. The free energy of a macroscopic system, Arch. Rational Mech. Anal., Volume 17 (1964), pp. 377-410 | DOI | MR

[23] Fournais, S.; Lewin, M.; Solovej, J. P. The semi-classical limit of large fermionic systems (2015) (arXiv:1510.01124)

[24] Fröhlich, J.; Park, Y. M. Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Comm. Math. Phys., Volume 59 (1978) no. 3, pp. 235-266 | MR

[25] Gori-Giorgi, P.; Seidl, M. Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry, Phys. Chem. Chem. Phys., Volume 12 (2010), pp. 14405-14419 | DOI

[26] Graf, G. M.; Schenker, D. On the molecular limit of Coulomb gases, Comm. Math. Phys., Volume 174 (1995) no. 1, pp. 215-227 | MR | Zbl

[27] Graf, G. M.; Solovej, J. P. A correlation estimate with applications to quantum systems with Coulomb interactions, Rev. Math. Phys., Volume 06 (1994) no. 05a, pp. 977-997 | DOI | MR

[28] Gruber, C.; Lebowitz, J. L.; Martin, P. A. Sum rules for inhomogeneous Coulomb systems, J. Chem. Phys., Volume 75 (1981) no. 2, pp. 944-954 | MR

[29] Gruber, C.; Lugrin, C.; Martin, P. A. Equilibrium equations for classical systems with long range forces and application to the one dimensional Coulomb gas, Helv. Phys. Acta, Volume 51 (1978) no. 5-6, pp. 829-866 | MR

[30] Gruber, C.; Lugrin, C.; Martin, P. A. Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules, J. Statist. Phys., Volume 22 (1980), pp. 193-236 | DOI | MR

[31] Gruber, C.; Martin, P. A. Translation invariance in statistical mechanics of classical continuous systems, Ann. Physics, Volume 131 (1981) no. 1, pp. 56 -72 | MR

[32] Hainzl, C.; Lewin, M.; Solovej, J. P. The thermodynamic limit of quantum Coulomb systems. Part I. General theory, Advances in Math., Volume 221 (2009), pp. 454-487 | DOI | Zbl

[33] Hainzl, C.; Lewin, M.; Solovej, J. P. The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Advances in Math., Volume 221 (2009), pp. 488-546 | DOI | Zbl

[34] Harriman, J. E. Orthonormal orbitals for the representation of an arbitrary density, Phys. Rev. A (3), Volume 24 (1981) no. 2, pp. 680-682 | DOI

[35] Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T. Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A (3), Volume 16 (1977) no. 5, pp. 1782-1785 | DOI

[36] Hohenberg, P.; Kohn, W. Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964) no. 3B, p. B864-B871 | DOI | MR

[37] Imbrie, J. Z. Debye screening for jellium and other Coulomb systems, Comm. Math. Phys., Volume 87 (1982) no. 4, pp. 515-565 | MR

[38] Kin-Lic Chan, G.; Handy, N. C. Optimized Lieb-Oxford bound for the exchange-correlation energy, Phys. Rev. A (3), Volume 59 (1999) no. 4, pp. 3075-3077 | DOI

[39] Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects, Phys. Rev. (2), Volume 140 (1965), p. A1133-A1138 | DOI | MR

[40] Kunz, H. The one-dimensional classical electron gas, Ann. Physics, Volume 85 (1974) no. 2, pp. 303 -335 | MR

[41] Lazarev, O.; Lieb, E. H. A smooth, complex generalization of the Hobby-Rice theorem, Indiana Univ. Math. J., Volume 62 (2013) no. 4, pp. 1133-1141 | DOI | MR | Zbl

[42] Leblé, T.; Serfaty, S. Large deviation principle for empirical fields of Log and Riesz gases, Invent. Math. (2017) (doi:10.1007/s00222-017-0738-0) | MR | Zbl

[43] Lewin, M. Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Volume 260 (2011), pp. 3535-3595 | DOI | MR | Zbl

[44] Lewin, M.; Lieb, E. H. Improved Lieb-Oxford exchange-correlation inequality with gradient correction, Phys. Rev. A (3), Volume 91 (2015) no. 2 (article no. 022507) | MR

[45] Lewin, M.; Nam, P. T.; Serfaty, S.; Solovej, J. P. Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math., Volume 68 (2015) no. 3, pp. 413-471 | DOI | MR | Zbl

[46] Lieb, E. H. A lower bound for Coulomb energies, Phys. Lett. A, Volume 70 (1979), pp. 444-446 | DOI | MR

[47] Lieb, E. H. Density functionals for Coulomb systems, Int. J. Quantum Chem., Volume 24 (1983), pp. 243-277 | DOI

[48] Lieb, E. H.; Loss, M. Analysis, Graduate Studies in Math., 14, American Mathematical Society, Providence, RI, 2001

[49] Lieb, E. H.; Narnhofer, H. The thermodynamic limit for jellium, J. Statist. Phys., Volume 12 (1975) no. 4, pp. 291-310 | DOI | MR | Zbl

[50] Lieb, E. H.; Oxford, S. Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., Volume 19 (1980) no. 3, pp. 427-439 | DOI

[51] Lieb, E. H.; Schrader, R. Current densities in density-functional theory, Phys. Rev. A (3), Volume 88 (2013) no. 3 (article no. 032516)

[52] Lieb, E. H.; Seiringer, R. The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010

[53] Lieb, E. H.; Solovej, J. P.; Yngvason, J. Ground states of large quantum dots in magnetic fields, Phys. Rev. B, Volume 51 (1995), pp. 10646-10665 | DOI

[54] Lundholm, D.; Nam, P. T.; Portmann, F. Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems, Arch. Rational Mech. Anal., Volume 219 (2016) no. 3, pp. 1343-1382 | DOI | MR | Zbl

[55] Martin, P. A.; Yalcin, T. The charge fluctuations in classical Coulomb systems, J. Statist. Phys., Volume 22 (1980), pp. 435-463 | DOI | MR

[56] Mikhailov, S. A.; Ziegler, K. Floating Wigner molecules and possible phase transitions in quantum dots, European Phys. J. B, Volume 28 (2002) no. 1, pp. 117-120 | DOI

[58] Odashima, M. M.; Capelle, K. How tight is the Lieb-Oxford bound?, J. Chem. Phys., Volume 127 (2007) no. 5, 054106 pages

[59] Perdew, J. P. Unified theory of exchange and correlation beyond the local density approximation, Electronic Structure of Solids ’91 (Ziesche, P.; Eschrig, H., eds.), Akademie Verlag, Berlin, 1991, pp. 11-20

[60] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, Phys. Rev. Lett., Volume 77 (1996), pp. 3865-3868 | DOI

[61] Perdew, J. P.; Kurth, S. Density functionals for non-relativistic Coulomb systems in the new century, A primer in density functional theory (Fiolhais, C.; Nogueira, F.; Marques, M. A. L., eds.), Springer, Berlin, Heidelberg, 2003, pp. 1-55

[62] Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, Volume 45 (1992), pp. 13244-13249 | DOI

[63] Petrache, M.; Serfaty, S. Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, Volume 16 (2015) no. 3, pp. 1-69 | MR | Zbl

[64] Räsänen, E.; Pittalis, S.; Capelle, K.; Proetto, C. R. Lower bounds on the exchange-correlation energy in reduced dimensions, Phys. Rev. Lett., Volume 102 (2009) no. 20 (article no. 206406) | DOI

[65] Räsänen, E.; Seidl, M.; Gori-Giorgi, P. Strictly correlated uniform electron droplets, Phys. Rev. B, Volume 83 (2011) no. 19 (article no. 195111) | DOI

[66] Rota Nodari, S.; Serfaty, S. Renormalized energy equidistribution and local charge balance in 2d Coulomb system, Internat. Math. Res. Notices (2015) no. 11, pp. 3035-3093 | MR | Zbl

[67] Rougerie, N.; Serfaty, S. Higher dimensional Coulomb gases and renormalized energy functionals, Comm. Pure Appl. Math., Volume 69 (2016) no. 3, pp. 519-605 | DOI | MR | Zbl

[68] Ruelle, D. Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, Singapore & London, 1999 | Zbl

[69] Rutherfoord, V. On the Lazarev-Lieb extension of the Hobby-Rice theorem, Adv. in Math., Volume 244 (2013), pp. 16-22 | DOI | MR | Zbl

[70] Sandier, E.; Serfaty, S. 1D log gases and the renormalized energy: crystallization at vanishing temperature, Probab. Theory Relat. Fields (2014), pp. 1-52

[71] Sandier, E.; Serfaty, S. 2D Coulomb gases and the renormalized energy, Ann. Probability, Volume 43 (2015) no. 4, pp. 2026-2083 | DOI | MR | Zbl

[72] Seidl, M. Strong-interaction limit of density-functional theory, Phys. Rev. A (3), Volume 60 (1999) no. 6, pp. 4387-4395 | DOI

[73] Seidl, M.; Di Marino, S.; Gerolin, A.; Nenna, L.; Giesbertz, K. J. H.; Gori-Giorgi, P. The strictly-correlated electron functional for spherically symmetric systems revisited (2017) (arXiv:1702.05022)

[74] Seidl, M.; Gori-Giorgi, P.; Savin, A. Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities, Phys. Rev. A (3), Volume 75 (2007) (article no. 042511)

[75] Seidl, M.; Perdew, J. P.; Levy, M. Strictly correlated electrons in density-functional theory, Phys. Rev. A (3), Volume 59 (1999) no. 1, pp. 51-54

[76] Seidl, M.; Vuckovic, S.; Gori-Giorgi, P. Challenging the Lieb-Oxford bound in a systematic way, Molecular Phys., Volume 114 (2016) no. 7-8, pp. 1076-1085 | DOI

[77] Serfaty, S. Ginzburg-Landau vortices, Coulomb gases, and renormalized energies, J. Statist. Phys., Volume 154 (2014) no. 3, pp. 660-680 | DOI | MR | Zbl

[78] Sun, J.; Perdew, J. P.; Ruzsinszky, A. Semilocal density functional obeying a strongly tightened bound for exchange, Proc. Nat. Acad. Sci. U.S.A., Volume 112 (2015), pp. 685-689 | DOI

[79] Sun, J.; Remsing, R. C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; Klein, M. L.; Perdew, J. P. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nature Chemistry, Volume 8 (2016), 831–836 pages

[80] Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly Constrained and Appropriately Normed Semilocal Density Functional, Phys. Rev. Lett., Volume 115 (2015) (article no. 036402)

Cité par Sources :