A branched transport limit of the Ginzburg-Landau functional
[Dérivation d’une fonctionnelle de type transport branché à partir du modèle de Ginzburg-Landau]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 317-375.

Nous étudions le modèle de Ginzburg-Landau pour les supraconducteurs de type I dans le régime de faible champ magnétique extérieur. Nous montrons qu’asymptotiquement, le flux magnétique se concentre sur des structures unidimensionnelles minimisant une fonctionnelle de type transport branché. Nous obtenons cette fonctionnelle simplifiée par Γ-convergence à partir du modèle de Ginzburg-Landau complet. Ceci permet d’obtenir une compréhension fine des différentes échelles mises en jeu.

We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive the simplified functional from the full Ginzburg-Landau model rigorously via Γ-convergence. The detailed analysis of the limiting procedure and the study of the limiting functional lead to a precise understanding of the multiple scales contained in the model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.72
Classification : 35Q56, 49S05, 82D55, 49J10, 49S05
Keywords: Gamma convergence, Ginzburg-Landau, branched transportation, pattern formation, type-I superconductors
Mot clés : Gamma convergence, Ginzburg-Landau, transport branché, supraconducteurs de type I
Conti, Sergio 1 ; Goldman, Michael 2 ; Otto, Felix 3 ; Serfaty, Sylvia 4

1 Institut für Angewandte Mathematik, Universität Bonn Endenicher Allee 60, 53115 Bonn, Germany
2 LJLL, Université Paris Diderot, CNRS, UMR 7598 Bât. Sophie Germain, 75205 Paris Cedex 13, France
3 Max Planck Institute for Mathematics in the Sciences Inselstraße 22, 04103 Leipzig, Germany
4 Courant Institute, NYU 251 Mercer Street New York, N.Y. 10012-1185, USA and Institut Universitaire de France & UPMC 4, place Jussieu, 75252 Paris cedex 05, France
@article{JEP_2018__5__317_0,
     author = {Conti, Sergio and Goldman, Michael and Otto, Felix and Serfaty, Sylvia},
     title = {A branched transport limit of {the~Ginzburg-Landau} functional},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {317--375},
     publisher = {Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.72},
     mrnumber = {3795445},
     zbl = {06988582},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jep.72/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Goldman, Michael
AU  - Otto, Felix
AU  - Serfaty, Sylvia
TI  - A branched transport limit of the Ginzburg-Landau functional
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 317
EP  - 375
VL  - 5
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/articles/10.5802/jep.72/
DO  - 10.5802/jep.72
LA  - en
ID  - JEP_2018__5__317_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Goldman, Michael
%A Otto, Felix
%A Serfaty, Sylvia
%T A branched transport limit of the Ginzburg-Landau functional
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 317-375
%V 5
%I Ecole polytechnique
%U http://archive.numdam.org/articles/10.5802/jep.72/
%R 10.5802/jep.72
%G en
%F JEP_2018__5__317_0
Conti, Sergio; Goldman, Michael; Otto, Felix; Serfaty, Sylvia. A branched transport limit of the Ginzburg-Landau functional. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 317-375. doi : 10.5802/jep.72. http://archive.numdam.org/articles/10.5802/jep.72/

[1] Alberti, G.; Choksi, R.; Otto, F. Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Amer. Math. Soc., Volume 22 (2009) no. 2, pp. 569-605 | DOI | MR | Zbl

[2] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford University Press, New York, 2000 | Zbl

[3] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient flows in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005 | Zbl

[4] Bella, P.; Goldman, M. Nucleation barriers at corners for a cubic-to-tetragonal phase transformation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 145 (2015) no. 4, pp. 715-724 | DOI | MR | Zbl

[5] Ben Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S. Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates, J. Nonlinear Sci., Volume 10 (2000), pp. 661-683 | DOI | Zbl

[6] Ben Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S. Energy scaling of compressed elastic films, Arch. Rational Mech. Anal., Volume 164 (2002), pp. 1-37 | DOI | Zbl

[7] Bernot, M.; Caselles, V.; Morel, J.-M. Optimal transportation networks. Models and theory, Lect. Notes in Math., 1955, Springer-Verlag, Berlin, 2009 | Zbl

[8] Bethuel, F. A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces (2014) (arXiv:1401.1649)

[9] Braides, A. Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002 | MR | Zbl

[10] Brancolini, A.; Rossmanith, C.; Wirth, B. Optimal micropatterns in 2D transport networks and their relation to image inpainting, Arch. Rational Mech. Anal., Volume 228 (2018) no. 1, pp. 279-308 | DOI | MR | Zbl

[11] Brancolini, A.; Wirth, B. Optimal micropatterns in transport networks (2015) (arXiv:1511.08467)

[12] Chan, A.; Conti, S. Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 1091-1124 | DOI | MR | Zbl

[13] Choksi, R.; Conti, S.; Kohn, R. V.; Otto, F. Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor, Comm. Pure Appl. Math., Volume 61 (2008), pp. 595-626 | DOI | MR | Zbl

[14] Choksi, R.; Kohn, R. V.; Otto, F. Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy, Comm. Math. Phys., Volume 201 (1999), pp. 61-79 | DOI | MR | Zbl

[15] Choksi, R.; Kohn, R. V.; Otto, F. Energy minimization and flux domain structure in the intermediate state of a type-I superconductor, J. Nonlinear Sci., Volume 14 (2004), pp. 119-171 | DOI | MR | Zbl

[16] Cinti, E.; Otto, F. Interpolation inequalities in pattern formation, J. Funct. Anal., Volume 271 (2016) no. 11, pp. 3348-3392 | DOI | MR | Zbl

[17] Conti, S. Branched microstructures: scaling and asymptotic self-similarity, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1448-1474 | DOI | MR | Zbl

[18] Conti, S.; Diermeier, J.; Zwicknagl, B. Deformation concentration for martensitic microstructures in the limit of low volume fraction, Calc. Var. Partial Differential Equations, Volume 56 (2017) no. 1, 56:16 pages | DOI | MR | Zbl

[19] Conti, S.; Otto, F.; Serfaty, S. Branched microstructures in the Ginzburg-Landau model of type-I superconductors, SIAM J. Math. Anal., Volume 48 (2016) no. 4, pp. 2994-3034 | DOI | MR | Zbl

[20] Conti, S.; Zwicknagl, B. Low volume-fraction microstructures in martensites and crystal plasticity, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 7, pp. 1319-1355 | DOI | MR | Zbl

[21] Dal Maso, G. An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl

[22] Frank, R. L.; Hainzl, C.; Seiringer, R.; Solovej, J P. Microscopic derivation of Ginzburg-Landau theory, J. Amer. Math. Soc., Volume 25 (2012) no. 3, pp. 667-713 | DOI | MR

[23] Goldman, M. Self-similar minimizers of a branched transport functional (2017) (arXiv:1704.05342)

[24] Goldman, M.; Merlet, B. Phase segregation for binary mixtures of Bose-Einstein Condensates, SIAM J. Math. Anal., Volume 49 (2017) no. 3, pp. 1947-1981 | DOI | MR | Zbl

[25] Jaffe, A.; Taubes, C. Vortices and monopoles. Structure of static gauge theories, Progress in Physics, 2, Birkhäuser, Boston MA, 1980 | Zbl

[26] Jin, W.; Sternberg, P. Energy estimates of the von Kármán model of thin-film blistering, J. Math. Phys., Volume 42 (2001), pp. 192-199 | DOI | Zbl

[27] Knüpfer, H.; Kohn, R. V.; Otto, F. Nucleation barriers for the cubic-to-tetragonal phase transformation, Comm. Pure Appl. Math., Volume 66 (2013) no. 6, pp. 867-904 | DOI | MR | Zbl

[28] Knüpfer, H.; Muratov, C. B. Domain structure of bulk ferromagnetic crystals in applied fields near saturation, J. Nonlinear Sci., Volume 21 (2011) no. 6, pp. 921-962 | DOI | MR | Zbl

[29] Kohn, R. V.; Müller, S. Branching of twins near an austenite-twinned-martensite interface, Phil. Mag. A, Volume 66 (1992), pp. 697-715 | DOI

[30] Kohn, R. V.; Müller, S. Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., Volume 47 (1994), pp. 405-435 | DOI | MR | Zbl

[31] Modica, L. The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987), pp. 123-142 | DOI | MR | Zbl

[32] Otto, F.; Viehmann, T. Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy, Calc. Var. Partial Differential Equations, Volume 38 (2010) no. 1-2, pp. 135-181 | DOI | MR | Zbl

[33] Oudet, E.; Santambrogio, F. A Modica-Mortola approximation for branched transport and applications, Arch. Rational Mech. Anal., Volume 201 (2011) no. 1, pp. 115-142 | DOI | MR | Zbl

[34] Prozorov, R. Equilibrium topology of the intermediate state in type-I superconductors of different shapes, Phys. Rev. Lett., Volume 98 (2007), 257001 pages | DOI

[35] Prozorov, R.; Giannetta, R. W.; Polyanskii, A. A.; Perkins, G. K. Topological hysteresis in the intermediate state of type I superconductors, Phys. Rev. B, Volume 72 (2005), 212508 pages | DOI

[36] Prozorov, R.; Hoberg, J. Dynamic formation of metastable intermediate state patterns in type-I superconductors, 25th international conference on low temperature physics (Journal of Physics: Conference Series), Volume 150, IOP Publishing, 2009 (article # 052217)

[37] Sandier, E.; Serfaty, S. Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser Boston, Inc., Boston, MA, 2007 | MR | Zbl

[38] Serfaty, S. Coulomb gases and Ginzburg-Landau vortices, Zürich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2015 | DOI | Zbl

[39] Tinkham, M. Introduction to superconductivity, Int. series in Pure and Appl. physics, McGraw Hill, New York, 1996

[40] Viehmann, T. Uniaxial ferromagnets, Universität Bonn (2009) (Ph. D. Thesis) | Zbl

[41] Villani, C. Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[42] Xia, Q. Interior regularity of optimal transport paths, Calc. Var. Partial Differential Equations, Volume 20 (2004) no. 3, pp. 283-299 | MR | Zbl

[43] Zwicknagl, B. Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes, Arch. Rational Mech. Anal., Volume 213 (2014), pp. 355-421 | DOI | MR | Zbl

Cité par Sources :