We prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem: if a sequence of initial data, bounded in some scaling invariant space, converges weakly to an initial data which generates a global smooth solution, does generate a global smooth solution? A positive answer in general to this question would imply global regularity for any data, through the following examples or with . We therefore introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.
On démontre un résultat de stabilité faible pour les équations de Navier-Stokes tridimensionnelles, incompressibles et homogènes. Plus précisément on étudie le problème suivant : si une suite de données initiales , bornée dans un espace invariant d’échelle, converge faiblement vers une donnée qui engendre une solution globale régulière, est-ce que engendre une solution globale régulière ? Une réponse affirmative à cette question en général aurait pour conséquence la régularité globale pour toute donnée initiale, via les exemples ou avec . On introduit donc un nouveau concept de convergence faible (convergence faible remise à l’échelle) sous lequel on peut donner une réponse affirmative. La démonstration repose sur des décompositions en profils dans des espaces de régularité anisotrope, et leur propagation par les équations de Navier-Stokes.
Accepted:
Published online:
DOI: 10.5802/jep.84
Keywords: Navier-Stokes equations, anisotropy, Besov spaces, profile decomposition
Mot clés : Équations de Navier-Stokes, anisotropie, espaces de Besov, décompositions en profils
@article{JEP_2018__5__843_0, author = {Bahouri, Hajer and Chemin, Jean-Yves and Gallagher, Isabelle}, title = {On the stability of global solutions to the three-dimensional {Navier-Stokes} equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {843--911}, publisher = {Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.84}, mrnumber = {3877168}, zbl = {06988594}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jep.84/} }
TY - JOUR AU - Bahouri, Hajer AU - Chemin, Jean-Yves AU - Gallagher, Isabelle TI - On the stability of global solutions to the three-dimensional Navier-Stokes equations JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 843 EP - 911 VL - 5 PB - Ecole polytechnique UR - http://archive.numdam.org/articles/10.5802/jep.84/ DO - 10.5802/jep.84 LA - en ID - JEP_2018__5__843_0 ER -
%0 Journal Article %A Bahouri, Hajer %A Chemin, Jean-Yves %A Gallagher, Isabelle %T On the stability of global solutions to the three-dimensional Navier-Stokes equations %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 843-911 %V 5 %I Ecole polytechnique %U http://archive.numdam.org/articles/10.5802/jep.84/ %R 10.5802/jep.84 %G en %F JEP_2018__5__843_0
Bahouri, Hajer; Chemin, Jean-Yves; Gallagher, Isabelle. On the stability of global solutions to the three-dimensional Navier-Stokes equations. Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 843-911. doi : 10.5802/jep.84. http://archive.numdam.org/articles/10.5802/jep.84/
[1] On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl. (9), Volume 83 (2004) no. 6, pp. 673-697 | DOI | MR | Zbl
[2] Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., 343, Springer, Heidelberg, 2011 | MR | Zbl
[3] A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math., Volume 3 (2011) no. 3, pp. 387-411 | DOI | MR | Zbl
[4] On the stability in weak topology of the set of global solutions to the Navier-Stokes equations, Arch. Rational Mech. Anal., Volume 209 (2013) no. 2, pp. 569-629 | DOI | MR | Zbl
[5] High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999) no. 1, pp. 131-175 | DOI | MR | Zbl
[6] On the lack of compactness in the 2D critical Sobolev embedding, J. Funct. Anal., Volume 260 (2011) no. 1, pp. 208-252 | DOI | MR | Zbl
[7] Lack of compactness in the 2D critical Sobolev embedding, the general case, J. Math. Pures Appl. (9), Volume 101 (2014) no. 4, pp. 415-457 | DOI | MR | Zbl
[8] A Fourier approach to the profile decomposition in Orlicz spaces, Math. Res. Lett., Volume 21 (2014) no. 1, pp. 33-54 | DOI | MR | Zbl
[9] La propriété de Fatou dans les espaces de Besov homogènes, Comptes Rendus Mathématique, Volume 349 (2011) no. 15-16, pp. 837-840 | DOI | Zbl
[10] Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2233-2247 | DOI | MR | Zbl
[11] Convergence of solutions of -systems or how to blow bubbles, Arch. Rational Mech. Anal., Volume 89 (1985) no. 1, pp. 21-56 | DOI | MR | Zbl
[12] Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992) no. 1, pp. 20-28 | DOI | Zbl
[13] Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., Volume 77 (1999), pp. 27-50 | DOI | Zbl
[14] Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., Volume 362 (2010) no. 6, pp. 2859-2873 | DOI | MR | Zbl
[15] The role of spectral anisotropy in the resolution of the three-dimensional Navier-Stokes equations, Studies in phase space analysis with applications to PDEs (Progr. Nonlinear Differential Equations Appl.), Volume 84, Birkhäuser/Springer, New York, 2013, pp. 53-79 | DOI | MR | Zbl
[16] Sums of large global solutions to the incompressible Navier-Stokes equations, J. reine angew. Math., Volume 681 (2013), pp. 65-82 | MR
[17] Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, Volume 121 (1995) no. 2, pp. 314-328 | Zbl
[18] On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, Comm. Math. Phys., Volume 272 (2007) no. 2, pp. 529-566 | MR | Zbl
[19] On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 | DOI | MR | Zbl
[20] Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. math. France, Volume 129 (2001) no. 2, pp. 285-316 | DOI | Numdam | MR | Zbl
[21] Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 5, pp. 1387-1424 | DOI | Numdam | MR | Zbl
[22] A profile decomposition approach to the Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013) no. 4, pp. 1527-1559 | DOI | Zbl
[23] Microlocal defect measures, Comm. Partial Differential Equations, Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | MR | Zbl
[24] Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optim. Calc. Var., Volume 3 (1998), pp. 213-233
[25] The second iterate for the Navier-Stokes equation, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2248-2264 | DOI | MR | Zbl
[26] Solutions in of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., Volume 89 (1985) no. 3, pp. 267-281 | DOI | MR
[27] Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable, J. Funct. Anal., Volume 261 (2011) no. 11, pp. 3181-3210 | DOI | MR | Zbl
[28] Stability to the global large solutions of 3-D Navier-Stokes equations, Adv. in Math., Volume 225 (2010) no. 3, pp. 1248-1284 | DOI | MR
[29] Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces (2017) (arXiv:1704.00560)
[30] Blowup theory for the critical nonlinear Schrödinger equations revisited, Internat. Math. Res. Notices (2005) no. 46, pp. 2815-2828 | DOI | Zbl
[31] The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoamericana, Volume 15 (1999) no. 1, pp. 1-36 | DOI | MR | Zbl
[32] Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., Volume 161 (1999) no. 2, pp. 384-396 | DOI | MR | Zbl
[33] Minimal -initial data for potential Navier-Stokes singularities (2012) (arXiv:1201.1592)
[34] Minimal -initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1448-1459 | DOI | MR | Zbl
[35] Strong -solutions of the Navier-Stokes equation in , with applications to weak solutions, Math. Z., Volume 187 (1984) no. 4, pp. 471-480 | DOI | MR
[36] An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011) no. 2, pp. 159-187 | DOI | Numdam | MR | Zbl
[37] Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008) no. 2, pp. 147-212 | MR | Zbl
[38] On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001) no. 2, pp. 353-392 | MR | Zbl
[39] Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math. J., Volume 59 (2010) no. 5, pp. 1801-1830 | DOI | MR | Zbl
[40] Well-posedness for the Navier-Stokes equations, Adv. in Math., Volume 157 (2001) no. 1, pp. 22-35 | MR | Zbl
[41] Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl
[42] Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1933), pp. 193-248 | DOI
[43] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82 | Zbl
[44] The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201 | DOI | MR | Zbl
[45] The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 2, pp. 45-121 | DOI | MR | Zbl
[46] Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices (1998) no. 8, pp. 399-425 | DOI | Zbl
[47] Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, pp. 105-212 | Zbl
[48] Équation anisotrope de Navier-Stokes dans des espaces critiques, Rev. Mat. Iberoamericana, Volume 21 (2005) no. 1, pp. 179-235 | DOI | Zbl
[49] Asymptotic behavior of global solutions to the Navier-Stokes equations in , Rev. Mat. Iberoamericana, Volume 14 (1998) no. 1, pp. 71-93 | DOI | MR
[50] Behaviour of Navier-Stokes solutions with data in with (in progress)
[51] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter & Co., Berlin, 1996 | MR | Zbl
[52] Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., Volume 260 (2011) no. 3, pp. 879-891 | DOI | MR | Zbl
[53] A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Volume 187 (1984) no. 4, pp. 511-517 | DOI | MR | Zbl
[54] -measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Edinburgh Math. Soc., Volume 115 (1990) no. 3-4, pp. 193-230 | DOI | MR | Zbl
[55] Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007 | Zbl
[56] Theory of function spaces, Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983 | MR | Zbl
[57] Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995 | Zbl
[58] The Navier-Stokes initial value problem in , Arch. Rational Mech. Anal., Volume 74 (1980) no. 3, pp. 219-230 | DOI | MR | Zbl
Cited by Sources: