We show that exceptional algebraic groups over number fields do not admit one-class genera of parahoric groups, except in the case . For the group , we enumerate all such one-class genera for the usual seven-dimensional representation.
Nous montrons que les groupes algébriques exceptionnels sur un corps de nombres n’admettent pas de genres de groupes parahoriques à une seule classe, sauf dans le cas de . Pour le groupe , nous énumérons tous les genres à une seule classe pour la représentation usuelle en dimension 7.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1052
Keywords: Class numbers, exceptional groups
@article{JTNB_2018__30_3_847_0, author = {Kirschmer, Markus}, title = {One-class genera of exceptional groups over number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {847--857}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1052}, mrnumber = {3938629}, zbl = {07081575}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1052/} }
TY - JOUR AU - Kirschmer, Markus TI - One-class genera of exceptional groups over number fields JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 847 EP - 857 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1052/ DO - 10.5802/jtnb.1052 LA - en ID - JTNB_2018__30_3_847_0 ER -
%0 Journal Article %A Kirschmer, Markus %T One-class genera of exceptional groups over number fields %J Journal de théorie des nombres de Bordeaux %D 2018 %P 847-857 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1052/ %R 10.5802/jtnb.1052 %G en %F JTNB_2018__30_3_847_0
Kirschmer, Markus. One-class genera of exceptional groups over number fields. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 847-857. doi : 10.5802/jtnb.1052. http://archive.numdam.org/articles/10.5802/jtnb.1052/
[1] The groups of order at most 2000, Electron. Res. Announc. Am. Math. Soc., Volume 7 (2001), pp. 1-4 | DOI | MR | Zbl
[2] Some finiteness properties of adele groups over number fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 16 (1963), pp. 5-30 | DOI | Numdam | Zbl
[3] Maximal integral forms of the algebraic group defined by finite subgroups, J. Number Theory, Volume 72 (1998) no. 2, pp. 282-308 | DOI | Zbl
[4] Groups over , Invent. Math., Volume 124 (1996), pp. 263-279 | DOI | Zbl
[5] Some exceptional -adic buildings, J. Algebra, Volume 92 (1985), pp. 208-223 | DOI | MR | Zbl
[6] On discrete chamber-transitive automorphism groups of affine buildings, Bull. Am. Math. Soc., Volume 16 (1987), pp. 129-133 | DOI | MR | Zbl
[7] Definite quadratic and hermitian forms with small class number, 2016 Habilitation thesis, RWTH Aachen University (Germany)
[8] Single-class genera of positive integral lattices, LMS J. Comput. Math., Volume 16 (2013), pp. 172-186 | DOI | MR | Zbl
[9] Discrete subgroups acting transitively on vertices of a Bruhat-Tits building, Duke Math. J., Volume 161 (2012) no. 3, pp. 483-544 | MR | Zbl
[10] On algebraic groups and discontinuous groups, Nagoya Math. J., Volume 27 (1966), pp. 279-322 | MR | Zbl
[11] Volumes of -arithmetic quotients of semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 69 (1989), pp. 91-117 | DOI | Numdam | Zbl
[12] Nonexistence of arithmetic fake compact Hermitian symmetric spaces of type other than , J. Math. Soc. Japan, Volume 64 (2012), pp. 683-731 | Zbl
[13] Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser, 1998 | MR | Zbl
[14] Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer, 2000 | Zbl
[15] Reductive groups over local fields, Automorphic forms, representations and -functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 29-69 | DOI | Zbl
[16] Enumeration of totally real number fields of bounded root discriminant, Algorithmic number theory (ANTS VIII, Banff, 2008) (Lecture Notes in Computer Science), Volume 5011, Springer, 2008, pp. 268-281 | DOI | MR | Zbl
[17] Transformations of a quadratic form which do not increase the class-number, Proc. Lond. Math. Soc., Volume 12 (1962), pp. 577-587 | DOI | MR | Zbl
Cited by Sources: