A variational open image theorem in positive characteristic
Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 965-977.

Nous démontrons un théorème de l’image adélique ouverte variationnel pour l’action du groupe de Galois sur la cohomologie d’un S-schéma propre et lisse, où S est une variété lisse sur un corps de type fini sur 𝔽 p . Notre outil clé est un résultat récent de Cadoret, Hui et Tamagawa.

We prove a variational open adelic image theorem for the Galois action on the cohomology of smooth proper S-schemes where S is a smooth variety over a finitely generated field of positive characteristic. A central tool is a recent result of Cadoret, Hui and Tamagawa.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1059
Classification : 11G10,  14K15
Mots clés : Compatible system, adelic openness, positive characteristic
@article{JTNB_2018__30_3_965_0,
     author = {B\"ockle, Gebhard and Gajda, Wojciech and Petersen, Sebastian},
     title = {A variational open image theorem in positive characteristic},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {965--977},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {3},
     year = {2018},
     doi = {10.5802/jtnb.1059},
     zbl = {07081582},
     mrnumber = {3938636},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1059/}
}
Böckle, Gebhard; Gajda, Wojciech; Petersen, Sebastian. A variational open image theorem in positive characteristic. Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 965-977. doi : 10.5802/jtnb.1059. http://archive.numdam.org/articles/10.5802/jtnb.1059/

[1] Berthelot, Pierre Altération de variétés algébriques, Séminaire Bourbaki. Volume 1995/96 (Astérisque), Volume 241, Société Mathématique de France, 1997, pp. 273-311 | MR 1472543 | Zbl 0924.14007

[2] Böckle, Gebhard; Gajda, Wojciech; Petersen, Sebastian Independence of -adic representations of geometric Galois groups, J. Reine Angew. Math., Volume 736 (2015), pp. 69-93 | Article | MR 3769986 | Zbl 0684.7718

[3] Cadoret, Anna An open adelic image theorem for motivic representations over function fields (to appear in Math. Res. Lett., https://webusers.imj-prg.fr/~anna.cadoret/Cadoret_MRL.pdf) | Article | Zbl 07075293

[4] Cadoret, Anna An open adelic image theorem for abelian schemes, Int. Math. Res. Not., Volume 2015 (2015) no. 20, pp. 10208-10242 | Article | MR 3455865 | Zbl 1352.14030

[5] Cadoret, Anna; Hui, Chun-Yin; Tamagawa, Akio Geometric monodromy - semisimplicity and maximality, Ann. Math., Volume 186 (2017) no. 1, pp. 205-236 | Article | MR 3665003 | Zbl 1369.14029

[6] Cadoret, Anna; Kret, Arno Galois generic points on Shimura varieties, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1893-1934 | Article | MR 3576114 | Zbl 06657570

[7] Cadoret, Anna; Tamagawa, Akio On the geometric image of 𝔽 -linear representations of étale fundamental groups, Int. Math. Res. Not. (2017), rnx193 (Art. ID rnx193) | Article

[8] Deligne, Pierre La conjecture de Weil I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | Article | Numdam | Zbl 0287.14001

[9] Deligne, Pierre La conjecture de Weil II, Publ. Math., Inst. Hautes Étud. Sci., Volume 52 (1980), pp. 137-252 | Article | Numdam | Zbl 0456.14014

[10] Dixon, Lance; Sautoy, Marcus du; Mann, Avinoam; Segal, Dan Analytic pro-p groups, Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, 1999, xviii+368 pages | MR 1720368 | Zbl 0934.20001

[11] Drinfeld, Vladimir On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012) no. 3, pp. 515-542 | Article | MR 3024821 | Zbl 1271.14028

[12] Hui, Chun-Yin; Larsen, Michael Adelic openness without the Mumford–Tate conjecture (2013) (https://arxiv.org/abs/1312.3812)

[13] Kerz, Mortiz; Schmidt, Alexander On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010) no. 3, pp. 641-668 | Article | MR 2578565 | Zbl 1185.14019

[14] Larsen, Michael; Pink, Richard On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992) no. 3, pp. 603-636 | Article | MR 1150604 | Zbl 0778.11036

[15] Larsen, Michael; Pink, Richard Abelian varieties, -adic representations and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | Article | MR 1339927 | Zbl 0867.14019

[16] Milne, James Algebraic Groups – The theory of group schemes of finite type over a field (Lecture notes available at www.jmilne.org)

[17] Milne, James Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | MR 559531 | Zbl 0433.14012

[18] Pink, Richard A Combination of the conjectures of Mordell-Lang and André-Oort, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | Zbl 1200.11041

[19] Serre, Jean-Pierre Sur les groupes de Galois attachés aux groups p-divisible, Proceedings on a conference on local fields, Springer, 1967 | Article | Zbl 0189.02901

[20] Serre, Jean-Pierre Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Viehweg, 1989 | Zbl 0676.14005

[21] Serre, Jean-Pierre Lettre à Ken Ribet du 1/1/1981 et du 29/1/1981, Collected papers. Vol. IV: 1985–1998, Springer, 2000