Nous prouvons une formule asymptotique précise pour certains types d’intégrales oscillatoires que l’on peut traiter par la méthode de la phase stationnaire. Les estimations sont uniformes en termes de paramètres auxiliaires, ce qui est crucial pour les applications en théorie analytique des nombres.
We prove a sharp asymptotic formula for certain oscillatory integrals that may be approached using the stationary phase method. The estimates are uniform in terms of auxiliary parameters, which is crucial for application in analytic number theory.
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1072
Classification : 41A60, 42A38
Mots clés : Oscillatory integrals, Stationary phase
@article{JTNB_2019__31_1_145_0, author = {K{\i}ral, Eren Mehmet and Petrow, Ian and Young, Matthew P.}, title = {Oscillatory integrals with uniformity in parameters}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {145--159}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1072}, mrnumber = {3994723}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1072/} }
TY - JOUR AU - Kıral, Eren Mehmet AU - Petrow, Ian AU - Young, Matthew P. TI - Oscillatory integrals with uniformity in parameters JO - Journal de Théorie des Nombres de Bordeaux PY - 2019 DA - 2019/// SP - 145 EP - 159 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1072/ UR - https://www.ams.org/mathscinet-getitem?mr=3994723 UR - https://doi.org/10.5802/jtnb.1072 DO - 10.5802/jtnb.1072 LA - en ID - JTNB_2019__31_1_145_0 ER -
Kıral, Eren Mehmet; Petrow, Ian; Young, Matthew P. Oscillatory integrals with uniformity in parameters. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 145-159. doi : 10.5802/jtnb.1072. http://archive.numdam.org/articles/10.5802/jtnb.1072/
[1] Distribution of Maass of holomorphic cusp forms, Duke Math. J., Volume 162 (2013) no. 14, pp. 2609-2644 | Article | Zbl 1312.11028
[2] The cubic moment of central values of automorphic -functions, Ann. Math., Volume 151 (2000) no. 3, pp. 1175-1216 | Article | MR 1779567 | Zbl 0973.11056
[3] van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, 1991 | MR 1145488 | Zbl 0713.11001
[4] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 | Zbl 1028.35001
[5] Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, 13, Oxford University Press, 1996 | MR 1420620 | Zbl 0861.11002
[6] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR 2061214 | Zbl 1059.11001
[7] The fifth moment of modular -functions (2017) (https://arxiv.org/abs/1701.07507)
[8] A generalized cubic moment and the Petersson formula for newforms, Math. Ann., Volume 373 (2019) no. 1-2, pp. 287-353 | Article | MR 3968874 | Zbl 07051745
[9] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | MR 1232192 | Zbl 0821.42001
[10] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR 2952218 | Zbl 1252.58001
Cité par Sources :