Soient une courbe elliptique et une extension de Galois. On construit un foncteur exact de la catégorie des modules sans torsion sur l’anneau des endomorphismes munis d’une action semi-linéaire de vers la catégorie des variétés algébriques sur qui sont -isogènes à une puissance de . Comme application, on donne une preuve simple du fait que toute courbe elliptique sur qui est géométriquement à multiplication complexe, est isogène sur à une courbe elliptique à multiplication complexe par un ordre maximal.
Given an elliptic curve and a Galois extension , we construct an exact functor from torsion-free modules over the endomorphism ring with a semilinear action to abelian varieties over that are -isogenous to a power of . As an application, we give a simple proof that every elliptic curve with complex multiplication geometrically is isogenous over the ground field to one with complex multiplication by a maximal order.
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1075
Classification : 14K02, 11G10
Mots clés : abelian varieties, complex multiplication, isogenies
@article{JTNB_2019__31_1_205_0, author = {Vogt, Isabel}, title = {Abelian varieties isogenous to a power of an elliptic curve over a {Galois} extension}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {205--213}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1075}, mrnumber = {3994726}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1075/} }
TY - JOUR AU - Vogt, Isabel TI - Abelian varieties isogenous to a power of an elliptic curve over a Galois extension JO - Journal de Théorie des Nombres de Bordeaux PY - 2019 DA - 2019/// SP - 205 EP - 213 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1075/ UR - https://www.ams.org/mathscinet-getitem?mr=3994726 UR - https://doi.org/10.5802/jtnb.1075 DO - 10.5802/jtnb.1075 LA - en ID - JTNB_2019__31_1_205_0 ER -
Vogt, Isabel. Abelian varieties isogenous to a power of an elliptic curve over a Galois extension. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 205-213. doi : 10.5802/jtnb.1075. http://archive.numdam.org/articles/10.5802/jtnb.1075/
[1] Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, 1998 | Zbl 0908.20001
[2] Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not., Volume 2017 (2017) no. 16, pp. 4923-4961 | MR 3687120 | Zbl 1405.11072
[3] Torsion points on elliptic curves with complex multiplication, Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | Article | Zbl 1272.11075
[4] Abelian varieties isogenous to a power of an elliptic curve, Compos. Math., Volume 154 (2018) no. 5, pp. 934-959 | Article | MR 3798590 | Zbl 1400.14116
[5] Degree of isogenies of elliptic curves with complex multiplication, J. Korean Math. Soc., Volume 36 (1999) no. 5, pp. 945-958 | MR 1724020 | Zbl 0943.11031
[6] Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton–Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1997, pp. 167-234 | Article | Zbl 0991.11028
[7] A local-global principle for isogenies of composite degree (2018) (https://arxiv.org/abs/1801.05355)
Cité par Sources :