Deligne–Illusie Classes as Arithmetic Kodaira–Spencer Classes
Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 371-383.

Faltings a montré qu’il n’y a pas de « classes de Kodaira–Spencer arithmétiques » satisfaisant à un certain axiome de compatibilité. En modifiant légèrement ses définitions, nous montrons que les classes de Deligne–Illusie satisfont à ce que l’on pourrait considérer comme « condition de compatibilité de Kodaira–Spencer arithmétique ».

Faltings showed that “arithmetic Kodaira–Spencer classes” satisfying a certain compatibility axiom cannot exist. By modifying his definitions slightly, we show that the Deligne–Illusie classes satisfy what could be considered an “arithmetic Kodaira–Spencer” compatibility condition.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1086
Classification : 12H05,  11G99
Mots clés : p-derivations, Frobenius lifts, semi-linear
@article{JTNB_2019__31_2_371_0,
     author = {Dupuy, Taylor and Zureick-Brown, David},
     title = {Deligne{\textendash}Illusie {Classes} as {Arithmetic} {Kodaira{\textendash}Spencer} {Classes}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {371--383},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {2},
     year = {2019},
     doi = {10.5802/jtnb.1086},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1086/}
}
TY  - JOUR
AU  - Dupuy, Taylor
AU  - Zureick-Brown, David
TI  - Deligne–Illusie Classes as Arithmetic Kodaira–Spencer Classes
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2019
DA  - 2019///
SP  - 371
EP  - 383
VL  - 31
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.1086/
UR  - https://doi.org/10.5802/jtnb.1086
DO  - 10.5802/jtnb.1086
LA  - en
ID  - JTNB_2019__31_2_371_0
ER  - 
Dupuy, Taylor; Zureick-Brown, David. Deligne–Illusie Classes as Arithmetic Kodaira–Spencer Classes. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 371-383. doi : 10.5802/jtnb.1086. http://archive.numdam.org/articles/10.5802/jtnb.1086/

[1] Achinger, Piotr; Witaszek, Jakub; Zdanowicz, Maciej Liftability of the Frobenius morphism and images of toric varieties (2017) (https://arxiv.org/abs/1708.03777)

[2] Borger, James Lambda-rings and the field with one element (2009) (https://arxiv.org/abs/0906.3146)

[3] Buium, Alexandru Differential function fields and moduli of algebraic varieties, Lecture Notes in Mathematics, 1226, Springer, 1986 | MR 874111 | Zbl 0613.12018

[4] Buium, Alexandru Differential characters of abelian varieties over p-adic fields, Invent. Math., Volume 122 (1995) no. 1, pp. 309-340 | Article | MR 1358979 | Zbl 0841.14037

[5] Buium, Alexandru Arithmetic differential equations, Mathematical Surveys and Monographs, 118, American Mathematical Society, 2005 | MR 2166202 | Zbl 1088.14001

[6] Deligne, Pierre; Illusie, Luc Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987), pp. 247-270 | Article | Zbl 0632.14017

[7] Dupuy, Taylor Deligne-Illusie classes I: Lifted torsors of lifts of the Frobenius for curves (2014) (https://arxiv.org/abs/1403.2025)

[8] Dupuy, Taylor; Katz, Eric; Rabinoff, Joseph; Zureick-Brown, David Total p-differentials on schemes over /p 2 , J. Algebra, Volume 524 (2019), pp. 110-123 | Article | MR 3903661 | Zbl 1408.13054

[9] Faltings, Gerd Does there exist an arithmetic Kodaira–Spencer class?, Algebraic geometry: Hirzebruch 70 (Contemporary Mathematics), Volume 241, American Mathematical Society, 1999, pp. 141-146 | MR 1718142 | Zbl 0944.14009

[10] Mochizuki, Shinichi A survey of the Hodge–Arakelov theory of elliptic curves. I, Arithmetic fundamental groups and noncommutative algebra (Proceedings of Symposia in Pure Mathematics), Volume 70, American Mathematical Society, 2002, pp. 533-569 | Article | MR 1935421 | Zbl 1058.14039

[11] Stacks Project Authors Stacks Project, 2014 (http://stacks.math.columbia.edu)

Cité par Sources :