Let be an odd prime and let be an elliptic curve defined over a number field with good reduction at the primes above . In this survey article, we give an overview of some of the important results proven for the fine Selmer group and the signed Selmer groups over cyclotomic towers as well as the signed Selmer groups over -extensions of an imaginary quadratic field where splits completely. We only discuss the algebraic aspects of these objects through Iwasawa theory. We also attempt to give some of the recent results implying the vanishing of the -invariant under the hypothesis of Conjecture A. Moreover, we draw an analogy between the classical Selmer group in the ordinary reduction case and that of the signed Selmer groups of Kobayashi in the supersingular reduction case. We highlight properties of signed Selmer groups, when has good supersingular reduction, which are completely analogous to the classical Selmer group, when has good ordinary reduction. In this survey paper we do not present any proofs, however, we have tried to give references of the discussed results for the interested reader.
Soit un nombre premier impair et soit une courbe elliptique sur un corps de nombres ayant bonne réduction en toute place au-dessus de Dans cet article de synthèse, nous donnons un aperçu de certains des résultats importants sur le groupe de Selmer fin et les groupes de Selmer signés dans les tours cyclotomiques aussi que sur les groupes de Selmer signés dans les -extensions d’un corps quadratique imaginaire, où est complètement décomposé. Nous discutons uniquement des aspects algébriques en utilisant des outils de la théorie d’Iwasawa. Nous donnons un survol de certains des résultats récents impliquant l’annulation de l’invariant sous l’hypothèse de la conjecture A. En outre, nous esquissons une analogie entre le groupe de Selmer classique dans le cas de bonne réduction ordinaire et le groupe de Selmer signé de Kobayashi dans le cas supersingulier. Nous mettons l’accent sur les propriétés des groupes de Selmer signés dans le cas où a bonne réduction supersingulière, qui sont complètement analogues à celles des groupes de Selmer classiques quand a bonne réduction ordinaire. Cet article ne contient pas de démonstrations, cependant pour le lecteur intéressé, nous donnons des références pour les résultats exposés dans le texte.
Revised:
Accepted:
Published online:
Keywords: Elliptic curves, Iwasawa theory, Selmer group
@article{JTNB_2021__33_3.1_853_0, author = {Hamidi, Parham and Ray, Jishnu}, title = {Conjecture~A and $\mu $-invariant for {Selmer} groups of supersingular elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {853--886}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1181}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1181/} }
TY - JOUR AU - Hamidi, Parham AU - Ray, Jishnu TI - Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 853 EP - 886 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1181/ DO - 10.5802/jtnb.1181 LA - en ID - JTNB_2021__33_3.1_853_0 ER -
%0 Journal Article %A Hamidi, Parham %A Ray, Jishnu %T Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2021 %P 853-886 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1181/ %R 10.5802/jtnb.1181 %G en %F JTNB_2021__33_3.1_853_0
Hamidi, Parham; Ray, Jishnu. Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 853-886. doi : 10.5802/jtnb.1181. http://archive.numdam.org/articles/10.5802/jtnb.1181/
[1] An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebr. Geom., Volume 16 (2007) no. 4, pp. 671-730 | DOI | MR | Zbl
[2] On the Euler characteristics of signed Selmer groups, Bull. Aust. Math. Soc., Volume 101 (2020) no. 2, pp. 238-246 | DOI | MR | Zbl
[3] Generalized ring of norms and generalized -modules, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 4, pp. 599-647 | DOI | Numdam | MR | Zbl
[4] Ring-theoretic properties of Iwasawa algebras: a survey, Doc. Math., Volume Extra Vol. (2006), pp. 7-33 | MR
[5] On Iwasawa theory of crystalline representations, Duke Math. J., Volume 104 (2000) no. 2, pp. 211-267 | MR | Zbl
[6] Bloch and Kato’s exponential map: three explicit formulas, Doc. Math., Volume Extra Vol. (2003), pp. 99-129 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[7] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | DOI | MR | Zbl
[8] Lifting the field of norms, J. Éc. Polytech., Math., Volume 1 (2014), pp. 29-38 | DOI | Numdam | MR | Zbl
[9] Iwasawa theory and -analytic Lubin-Tate -modules, Doc. Math., Volume 22 (2017), pp. 999-1030 | MR | Zbl
[10] Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compos. Math., Volume 58 (1986) no. 3, pp. 341-369 | Numdam | MR | Zbl
[11] Elements of Mathematics. Algebra. II. Chapters 4–7, Springer, 1990, vii+461 pages (Translated from the French by P. M. Cohn and J. Howie) | MR
[12] Integral Iwasawa theory of Galois representations for non-ordinary primes, Math. Z., Volume 286 (2017) no. 1-2, pp. 361-398 | DOI | MR | Zbl
[13] Représentations -adiques surconvergentes, Invent. Math., Volume 133 (1998) no. 3, pp. 581-611 | DOI | MR | Zbl
[14] Théorie d’Iwasawa des représentations -adiques d’un corps local, J. Am. Math. Soc., Volume 12 (1999) no. 1, pp. 241-268 | DOI | MR | Zbl
[15] Kummer theory for abelian varieties over local fields, Invent. Math., Volume 124 (1996) no. 1-3, pp. 129-174 | DOI | MR | Zbl
[16] Euler characteristics and elliptic curves. II, J. Math. Soc. Japan, Volume 53 (2001) no. 1, pp. 175-235 | DOI | MR | Zbl
[17] Links between cyclotomic and Iwasawa theory, Doc. Math., Volume Extra Vol. (2003), pp. 187-215 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[18] Modules over Iwasawa algebras, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 73-108 | DOI | MR
[19] Fine Selmer groups of elliptic curves over -adic Lie extensions, Math. Ann., Volume 331 (2005) no. 4, pp. 809-839 | DOI | MR | Zbl
[20] Galois cohomology of elliptic curves, Narosa Publishing House, 2010, xii+98 pages | MR
[21] The Iwasawa Invariant Vanishes for Abelian Number Fields, Ann. Math., Volume 109 (1979) no. 2, pp. 377-395 | DOI | MR | Zbl
[22] Sur certains types de représentations -adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. Math., Volume 115 (1982) no. 3, pp. 529-577 | DOI | MR | Zbl
[23] Représentations -adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II (Progress in Mathematics), Volume 87, Birkhäuser, 1990, pp. 249-309 | MR | Zbl
[24] Extensions algébrique et corps des normes des extensions APF des corps locaux, C. R. Math. Acad. Sci. Paris, Volume 288 (1979) no. 8, p. A441-A444 | MR | Zbl
[25] Almost ring theory, Lecture Notes in Mathematics, 1800, Springer, 2003, vi+307 pages | DOI | MR
[26] The structure of Selmer groups, Proc. Natl. Acad. Sci. USA, Volume 94 (1997) no. 21, pp. 11125-11128 | DOI | MR | Zbl
[27] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl
[28] Sur la cohomologie galoisienne des corps -adiques, Bull. Soc. Math. Fr., Volume 126 (1998) no. 4, pp. 563-600 | DOI | Numdam | MR | Zbl
[29] Iwasawa theory for elliptic curves at supersingular primes: A pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[30] Chromatic Selmer groups and arithmetic invariants of elliptic curves, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3.2, pp. 1103-1114
[31] On -extensions of algebraic number fields, Bull. Am. Math. Soc., Volume 65 (1959), pp. 183-226 | DOI | MR | Zbl
[32] On -Extensions of Algebraic Number Fields, Ann. Math., Volume 98 (1973) no. 2, pp. 246-326 | DOI | Zbl
[33] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl
[34] The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | MR | Zbl
[35] Signed-Selmer groups over the -extension of an imaginary quadratic field, Can. J. Math., Volume 66 (2014) no. 4, pp. 826-843 | DOI | MR | Zbl
[36] On the plus and the minus Selmer groups for elliptic curves at supersingular primes, Tokyo J. Math., Volume 41 (2018) no. 1, pp. 273-303 | MR | Zbl
[37] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[38] Herr-complexes in the Lubin-Tate setting, 2020 | arXiv
[39] Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | DOI | MR | Zbl
[40] Coleman maps and the -adic regulator, Algebra Number Theory, Volume 5 (2011) no. 8, pp. 1095-1131 | DOI | MR | Zbl
[41] On Selmer groups in the supersingular reduction case, Tokyo J. Math., Volume 43 (2020) no. 2, pp. 455-479 | MR | Zbl
[42] Signed Selmer groups over -adic Lie extensions, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 2, pp. 377-403 | Numdam | MR | Zbl
[43] On the -cotorsion subgroup of the Selmer group, Asian J. Math., Volume 24 (2020) no. 3, pp. 437-456 | DOI | MR | Zbl
[44] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[45] Class fields of abelian extensions of , Invent. Math., Volume 76 (1984) no. 2, pp. 179-330 | DOI | MR
[46] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xvi+825 pages | DOI | MR
[47] On the structure of Selmer groups over -adic Lie extensions, J. Algebr. Geom., Volume 11 (2002) no. 3, pp. 547-580 | DOI | MR | Zbl
[48] Groupe de Selmer d’une courbe elliptique à multiplication complexe, Compos. Math., Volume 43 (1981) no. 3, pp. 387-417 | MR | Zbl
[49] Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér. (1984) no. 17, p. 130 | MR | Zbl
[50] Théorie d’Iwasawa et hauteurs -adiques (cas des variétés abéliennes), Séminaire de Théorie des Nombres, Paris, 1990–91 (Progress in Mathematics), Volume 108, Birkhäuser, 1993, pp. 203-220 | DOI | MR | Zbl
[51] Théorie d’Iwasawa des représentations -adiques sur un corps local, Invent. Math., Volume 115 (1994) no. 1, pp. 81-161 (with an appendix by Jean-Marc Fontaine) | DOI | MR | Zbl
[52] Fonctions -adiques des représentations -adiques, Astérisque, 229, Société Mathématique de France, 1995, 198 pages | Numdam
[53] Arithmétique des courbes elliptiques à réduction supersingulière en , Exp. Math., Volume 12 (2003) no. 2, pp. 155-186 | DOI | MR | Zbl
[54] On the -adic -function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | DOI | MR | Zbl
[55] Universal norms and the Fargues–Fontaine curve (2020) (https://arxiv.org/abs/2010.02292)
[56] On the -invariant in Iwasawa theory, WIN—women in numbers (Fields Institute Communications), Volume 60, American Mathematical Society, 2011, pp. 265-276 | MR | Zbl
[57] Galois representations and -modules, Cambridge Studies in Advanced Mathematics, 164, Cambridge University Press, 2017, vii+148 pages | DOI | MR
[58] Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 401-468 | DOI | MR | Zbl
[59] Higher fields of norms and -modules, Doc. Math., Volume Extra Vol. (2006), pp. 685-709 | MR
[60] Perfectoid spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 245-313 | DOI | Numdam | MR | Zbl
[61] Ramification in -adic Lie extensions, Invent. Math., Volume 17 (1972), pp. 44-50 | DOI | MR | Zbl
[62] Sur la dimension cohomologique des groupes profinis, Topology, Volume 3 (1965), pp. 413-420 | DOI | MR | Zbl
[63] Fine Selmer groups and isogeny invariance, Geometry, algebra, number theory, and their information technology applications (Springer Proceedings in Mathematics & Statistics), Volume 251, Springer, 2018, pp. 419-444 | DOI | MR | Zbl
[64] On the structure theory of the Iwasawa algebra of a -adic Lie group, J. Eur. Math. Soc., Volume 4 (2002) no. 3, pp. 271-311 | DOI | MR | Zbl
[65] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | MR
[66] Duality theorems for abelian varieties over -extensions, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 471-492 | DOI | MR | Zbl
[67] Iwasawa theory of the fine Selmer group, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 83-108 | DOI | MR | Zbl
Cited by Sources: