Soit
Let
Révisé le :
Accepté le :
Publié le :
Mots-clés : Elliptic curves, Iwasawa theory, Selmer group
@article{JTNB_2021__33_3.1_853_0, author = {Hamidi, Parham and Ray, Jishnu}, title = {Conjecture~A and $\mu $-invariant for {Selmer} groups of supersingular elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {853--886}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1181}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1181/} }
TY - JOUR AU - Hamidi, Parham AU - Ray, Jishnu TI - Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 853 EP - 886 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1181/ DO - 10.5802/jtnb.1181 LA - en ID - JTNB_2021__33_3.1_853_0 ER -
%0 Journal Article %A Hamidi, Parham %A Ray, Jishnu %T Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2021 %P 853-886 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1181/ %R 10.5802/jtnb.1181 %G en %F JTNB_2021__33_3.1_853_0
Hamidi, Parham; Ray, Jishnu. Conjecture A and $\mu $-invariant for Selmer groups of supersingular elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 853-886. doi : 10.5802/jtnb.1181. https://www.numdam.org/articles/10.5802/jtnb.1181/
[1] An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebr. Geom., Volume 16 (2007) no. 4, pp. 671-730 | DOI | MR | Zbl
[2] On the Euler characteristics of signed Selmer groups, Bull. Aust. Math. Soc., Volume 101 (2020) no. 2, pp. 238-246 | DOI | MR | Zbl
[3] Generalized ring of norms and generalized
[4] Ring-theoretic properties of Iwasawa algebras: a survey, Doc. Math., Volume Extra Vol. (2006), pp. 7-33 | MR
[5] On Iwasawa theory of crystalline representations, Duke Math. J., Volume 104 (2000) no. 2, pp. 211-267 | MR | Zbl
[6] Bloch and Kato’s exponential map: three explicit formulas, Doc. Math., Volume Extra Vol. (2003), pp. 99-129 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[7] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | DOI | MR | Zbl
[8] Lifting the field of norms, J. Éc. Polytech., Math., Volume 1 (2014), pp. 29-38 | DOI | Numdam | MR | Zbl
[9] Iwasawa theory and
[10] Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compos. Math., Volume 58 (1986) no. 3, pp. 341-369 | Numdam | MR | Zbl
[11] Elements of Mathematics. Algebra. II. Chapters 4–7, Springer, 1990, vii+461 pages (Translated from the French by P. M. Cohn and J. Howie) | MR
[12] Integral Iwasawa theory of Galois representations for non-ordinary primes, Math. Z., Volume 286 (2017) no. 1-2, pp. 361-398 | DOI | MR | Zbl
[13] Représentations
[14] Théorie d’Iwasawa des représentations
[15] Kummer theory for abelian varieties over local fields, Invent. Math., Volume 124 (1996) no. 1-3, pp. 129-174 | DOI | MR | Zbl
[16] Euler characteristics and elliptic curves. II, J. Math. Soc. Japan, Volume 53 (2001) no. 1, pp. 175-235 | DOI | MR | Zbl
[17] Links between cyclotomic and
[18] Modules over Iwasawa algebras, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 73-108 | DOI | MR
[19] Fine Selmer groups of elliptic curves over
[20] Galois cohomology of elliptic curves, Narosa Publishing House, 2010, xii+98 pages | MR
[21] The Iwasawa Invariant
[22] Sur certains types de représentations
[23] Représentations
[24] Extensions algébrique et corps des normes des extensions APF des corps locaux, C. R. Math. Acad. Sci. Paris, Volume 288 (1979) no. 8, p. A441-A444 | MR | Zbl
[25] Almost ring theory, Lecture Notes in Mathematics, 1800, Springer, 2003, vi+307 pages | DOI | MR
[26] The structure of Selmer groups, Proc. Natl. Acad. Sci. USA, Volume 94 (1997) no. 21, pp. 11125-11128 | DOI | MR | Zbl
[27] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl
[28] Sur la cohomologie galoisienne des corps
[29] Iwasawa theory for elliptic curves at supersingular primes: A pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[30] Chromatic Selmer groups and arithmetic invariants of elliptic curves, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3.2, pp. 1103-1114
[31] On
[32] On
[33]
[34] The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | MR | Zbl
[35] Signed-Selmer groups over the
[36] On the plus and the minus Selmer groups for elliptic curves at supersingular primes, Tokyo J. Math., Volume 41 (2018) no. 1, pp. 273-303 | MR | Zbl
[37] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[38] Herr-complexes in the Lubin-Tate setting, 2020 | arXiv
[39] Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | DOI | MR | Zbl
[40] Coleman maps and the
[41] On Selmer groups in the supersingular reduction case, Tokyo J. Math., Volume 43 (2020) no. 2, pp. 455-479 | MR | Zbl
[42] Signed Selmer groups over
[43] On the
[44] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[45] Class fields of abelian extensions of
[46] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xvi+825 pages | DOI | MR
[47] On the structure of Selmer groups over
[48] Groupe de Selmer d’une courbe elliptique à multiplication complexe, Compos. Math., Volume 43 (1981) no. 3, pp. 387-417 | MR | Zbl
[49] Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér. (1984) no. 17, p. 130 | MR | Zbl
[50] Théorie d’Iwasawa et hauteurs
[51] Théorie d’Iwasawa des représentations
[52] Fonctions
[53] Arithmétique des courbes elliptiques à réduction supersingulière en
[54] On the
[55] Universal norms and the Fargues–Fontaine curve (2020) (https://arxiv.org/abs/2010.02292)
[56] On the
[57] Galois representations and
[58] Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 401-468 | DOI | MR | Zbl
[59] Higher fields of norms and
[60] Perfectoid spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 245-313 | DOI | Numdam | MR | Zbl
[61] Ramification in
[62] Sur la dimension cohomologique des groupes profinis, Topology, Volume 3 (1965), pp. 413-420 | DOI | MR | Zbl
[63] Fine Selmer groups and isogeny invariance, Geometry, algebra, number theory, and their information technology applications (Springer Proceedings in Mathematics & Statistics), Volume 251, Springer, 2018, pp. 419-444 | DOI | MR | Zbl
[64] On the structure theory of the Iwasawa algebra of a
[65] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | MR
[66] Duality theorems for abelian varieties over
[67] Iwasawa theory of the fine Selmer group, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 83-108 | DOI | MR | Zbl
Cité par Sources :