I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.
On étend le théorème de Hasse–Arf de la classe des extensions résiduellement séparables des anneaux de valuation discrète complets à la classe des extensions monogènes.
@article{JTNB_2004__16_2_373_0, author = {Borger, James}, title = {A monogenic {Hasse-Arf} theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {373--375}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.451}, zbl = {1077.13011}, mrnumber = {2143559}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.451/} }
TY - JOUR AU - Borger, James TI - A monogenic Hasse-Arf theorem JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 373 EP - 375 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.451/ DO - 10.5802/jtnb.451 LA - en ID - JTNB_2004__16_2_373_0 ER -
Borger, James. A monogenic Hasse-Arf theorem. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 2, pp. 373-375. doi : 10.5802/jtnb.451. http://archive.numdam.org/articles/10.5802/jtnb.451/
[1] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic -theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. | MR | Zbl
[2] S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. | MR | Zbl
[3] J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. | MR | Zbl
[4] B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. | MR | Zbl
[5] L. Spriano. Thesis, Université de Bordeaux, 1999.
Cited by Sources: