Fundamental units in a family of cubic fields
Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 3, pp. 569-575.

Let 𝒪 be the maximal order of the cubic field generated by a zero ε of x 3 +(-1)x 2 -x-1 for , 3. We prove that ε,ε-1 is a fundamental pair of units for 𝒪, if [𝒪:[ε]]/3.

Soit 𝒪 l’ordre maximal du corps cubique engendré par une racine ε de l’equation x 3 +(-1)x 2 -x-1=0, où , 3. Nous prouvons que ε,ε-1 forment un système fondamental d’unités dans 𝒪, si [𝒪:[ε]]/3.

DOI: 10.5802/jtnb.461
Ennola, Veikko 1

1 Department of Mathematics University of Turku FIN-20014, Finland
@article{JTNB_2004__16_3_569_0,
     author = {Ennola, Veikko},
     title = {Fundamental units in a family of cubic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {569--575},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {3},
     year = {2004},
     doi = {10.5802/jtnb.461},
     zbl = {1079.11056},
     mrnumber = {2144958},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.461/}
}
TY  - JOUR
AU  - Ennola, Veikko
TI  - Fundamental units in a family of cubic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
SP  - 569
EP  - 575
VL  - 16
IS  - 3
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.461/
DO  - 10.5802/jtnb.461
LA  - en
ID  - JTNB_2004__16_3_569_0
ER  - 
%0 Journal Article
%A Ennola, Veikko
%T Fundamental units in a family of cubic fields
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 569-575
%V 16
%N 3
%I Université Bordeaux 1
%U http://archive.numdam.org/articles/10.5802/jtnb.461/
%R 10.5802/jtnb.461
%G en
%F JTNB_2004__16_3_569_0
Ennola, Veikko. Fundamental units in a family of cubic fields. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 3, pp. 569-575. doi : 10.5802/jtnb.461. http://archive.numdam.org/articles/10.5802/jtnb.461/

[1] B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. | MR | Zbl

[2] V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. | MR | Zbl

[3] H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. | MR | Zbl

[4] M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. | MR | Zbl

[5] E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. | MR | Zbl

Cited by Sources: