Let be a prime, be the non-singular projective curve defined over by the affine model , the point of at infinity on this model, the Jacobian of , and the albanese embedding with as base point. Let be an algebraic closure of . Taking care of a case not covered in [12], we show that consists only of the image under of the Weierstrass points of and the points and , where denotes the torsion points of .
Soit un nombre premier, soit la courbe projective lisse définie sur par le modèle affine , soit le point à l’infini de ce modèle de , soit la jacobienne de et soit le morphisme d’Abel-Jacobi associé à . Soit une clôture algébrique de . Nous traitons ici un cas non couvert dans [12], en montrant que est composé de l’image par des points de Weierstrass de ainsi que les points et de . Ici, désigne les points de torsion de .
@article{JTNB_2004__16_3_577_0, author = {Grant, David and Shaulis, Delphy}, title = {The cuspidal torsion packet on hyperelliptic {Fermat} quotients}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {577--585}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.462}, zbl = {1069.11024}, mrnumber = {2144959}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.462/} }
TY - JOUR AU - Grant, David AU - Shaulis, Delphy TI - The cuspidal torsion packet on hyperelliptic Fermat quotients JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 577 EP - 585 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.462/ DO - 10.5802/jtnb.462 LA - en ID - JTNB_2004__16_3_577_0 ER -
%0 Journal Article %A Grant, David %A Shaulis, Delphy %T The cuspidal torsion packet on hyperelliptic Fermat quotients %J Journal de théorie des nombres de Bordeaux %D 2004 %P 577-585 %V 16 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.462/ %R 10.5802/jtnb.462 %G en %F JTNB_2004__16_3_577_0
Grant, David; Shaulis, Delphy. The cuspidal torsion packet on hyperelliptic Fermat quotients. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 3, pp. 577-585. doi : 10.5802/jtnb.462. http://archive.numdam.org/articles/10.5802/jtnb.462/
[1] G. Anderson, Torsion points on Jacobians of quotients of Fermat curves and -adic soliton theory. Invent. Math 118, (1994), 475–492. | MR | Zbl
[2] M. Baker, Torsion points on modular curves. Invent. Math 140, (2000), 487–509. | MR | Zbl
[3] M. Baker, B. Poonen, Torsion packets on curves. Compositio Math 127, (2001), 109–116. | MR | Zbl
[4] M. Baker, K. Ribet, Galois theory and torsion points on curves. Journal de Théorie des nombres de Bordeaux 15, (2003), 11–32. | Numdam | MR | Zbl
[5] J. Boxall, D. Grant, Examples of torsion points on genus 2 curves. Trans. Amer. Math. Soc 352, (2000), 4533–4555. | MR | Zbl
[6] J. Boxall, D. Grant, Singular torsion on elliptic curves. Mathematical Research Letters 10, (2003), 847–866. | MR | Zbl
[7] F. Calegari, Almost rational torsion points on semistable elliptic curves. IMRN no. 10, (2001), 487–503. | MR | Zbl
[8] J. Coates, A. Wiles, On the conjecture of Birch and Swinnerton-Dyer. Invent. Math 39, (1977), 223–251. | MR | Zbl
[9] R. F. Coleman, Torsion points on Fermat curves. Compositio Math 58, (1986), 191–208. | Numdam | MR | Zbl
[10] R. F. Coleman , Torsion points on abelian étale coverings of . Trans. AMS 311, (1989), 185–208. | MR | Zbl
[11] R. F. Coleman, W. McCallum, Stable reduction of Fermat curves and Jacobi sum Hecke characters J. Reine Angew. Math 385, (1988), 41–101. | EuDML | MR | Zbl
[12] R. F. Coleman, A. Tamagawa, P. Tzermias, The cuspidal torsion packet on the Fermat curve. J. Reine Angew. Math 496, (1998), 73–81. | MR | Zbl
[13] D. Grant, Torsion on theta divisors of hyperelliptic Fermat jacobians. Compositio Math. 140, (2004), 1432–1438. | MR | Zbl
[14] R. Greenberg, On the Jacobian variety of some algebraic curves. Compositio Math 42, (1981), 345–359. | EuDML | Numdam | MR | Zbl
[15] R. Gupta, Ramification in the Coates-Wiles tower. Invent. Math 81, (1985), 59–69. | EuDML | MR | Zbl
[16] M. Kurihara, Some remarks on conjectures about cyclotomic fields and -groups of . Composition Math 81, (1992), 223–236. | EuDML | Numdam | MR | Zbl
[17] S. Lang, Division points on curves. Ann. Mat. Pura. Appl 70, (1965), 229-234. | MR | Zbl
[18] S. Lang, Complex Multiplication. Springer-Verlag, New York, 1983. | MR | Zbl
[19] K. Ribet, M. Kim, Torsion points on modular curves and Galois theory. Notes of a talk by K. Ribet in the Distinguished Lecture Series, Southwestern Center for Arithmetic Algebraic Geometry, (May 1999).
[20] D. Shaulis, Torsion points on the Jacobian of a hyperelliptic rational image of a Fermat curve. Thesis, University of Colorado at Boulder, 1998.
[21] B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient. Thesis, University of Colorado at Boulder, 2003.
[22] A. Tamagawa, Ramification of torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J 106, (2001), 281–319. | MR | Zbl
[23] P. Tzermias, The Manin-Mumford conjecture: a brief survey. Bull. London Math. Soc. 32, (2000), 641–652. | MR | Zbl
Cited by Sources: