Designs, groups and lattices
Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 25-44.

The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold 6-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.

La notion de designs dans les espaces Grassmanniens a été introduite par l’auteur et R. Coulangeon, G. Nebe dans [3]. Après avoir rappelé les premières propriétés de ces objets et les relations avec la théorie des réseaux, nous montrons que la famille des réseaux de Barnes-Wall contient des 6-designs grassmanniens. Nous discutons également des relations entre cette notion de designs et les designs associés à l’espace symétrique formé des espaces totalement isotropes d’un espace quadratique binaire, qui sont mises en évidence par une certaine construction utilisant le groupe de Clifford.

DOI: 10.5802/jtnb.474
Bachoc, Christine 1

1 Université Bordeaux I 351, cours de la Libération 33405 Talence, France
@article{JTNB_2005__17_1_25_0,
     author = {Bachoc, Christine},
     title = {Designs, groups and lattices},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {25--44},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.474},
     zbl = {1074.05023},
     mrnumber = {2152208},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.474/}
}
TY  - JOUR
AU  - Bachoc, Christine
TI  - Designs, groups and lattices
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 25
EP  - 44
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.474/
DO  - 10.5802/jtnb.474
LA  - en
ID  - JTNB_2005__17_1_25_0
ER  - 
%0 Journal Article
%A Bachoc, Christine
%T Designs, groups and lattices
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 25-44
%V 17
%N 1
%I Université Bordeaux 1
%U http://archive.numdam.org/articles/10.5802/jtnb.474/
%R 10.5802/jtnb.474
%G en
%F JTNB_2005__17_1_25_0
Bachoc, Christine. Designs, groups and lattices. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 25-44. doi : 10.5802/jtnb.474. http://archive.numdam.org/articles/10.5802/jtnb.474/

[1] C. Bachoc, E. Bannai, R. Coulangeon, Codes and designs in Grassmannian spaces. Discrete Mathematics 277 (2004), 15–28. | MR | Zbl

[2] C. Bachoc, Linear programming bounds for codes in Grassmannian spaces. In preparation.

[3] C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmannian spaces and lattices. J. Algebraic Combinatorics 16 (2002), 5–19. | MR | Zbl

[4] C. Bachoc, G. Nebe, Siegel modular forms, Grassmannian designs, and unimodular lattices. Proceedings of the 19th Algebraic Combinatorics Symposium, Kumamoto (2002).

[5] C. Bachoc, B. Venkov, Modular forms, lattices and spherical designs. In “Réseaux euclidiens, designs sphériques et formes modulaires”, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001), 87–111. | MR | Zbl

[6] E. Bannai, T. Ito, Agebraic Combinatorics I, Association Schemes (1984). | MR | Zbl

[7] M. Broué, M. Enguehard, Une famille infinie de formes quadratiques entières et leurs groupes d’automorphismes. Ann. Scient. E.N.S., 4 e série, 6 (1973), 17–52. | Numdam | MR | Zbl

[8] B. Bolt, The Clifford collineation, transform and similarity groups III: generators and involutions. J. Australian Math. Soc, 2 (1961), 334–344. | MR | Zbl

[9] B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups I. J. Australian Math. Soc, 2 (1961), 60–79 | MR | Zbl

[10] B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups II. J. Australian Math. Soc, 2 (1961), 80–96 | MR | Zbl

[11] J. H. Conway, R. H. Hardin, E. Rains, P.W. Shor, N. J. A. Sloane, A group-theoretical framework for the construction of packings in Grassmannian spaces. J. Algebraic Comb. 9 (1999), 129–140. | MR | Zbl

[12] J. H. Conway, R. H. Hardin, N. J. A. Sloane, Packing Lines, Planes, etc., Packings in Grassmannian Spaces. Experimental Mathematics 5 (1996), 139–159. | MR | Zbl

[13] R. Coulangeon, Réseaux k-extrêmes. Proc. London Math. Soc. (3) 73 (1996), no. 3, 555–574. | MR | Zbl

[14] P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs. Geom. Dedicata 6 (1977), 363–388. | MR | Zbl

[15] P. Delsarte, V.I. Levenshtein, Association schemes and coding theory. IEEE Trans. Inf. Th. 44 (6) (1998), 2477–2504. | MR | Zbl

[16] R. Goodman, N. R. Wallach, Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, 1998. | MR | Zbl

[17] A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proc. London Math. Soc. (3) 29 (1974), 174–192. | MR | Zbl

[18] J. Martinet, Sur certains designs sphériques liés à des réseaux entiers. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). | MR | Zbl

[19] G. Nebe, W. Plesken, Finite rational matrix groups. Memoirs of the AMS, vol. 116, nb. 556 (1995). | MR | Zbl

[20] G. Nebe, E. Rains, N.J.A Sloane, The invariants of the Clifford groups. Designs, Codes, and Cryptography 24 (1) (2001), 99–122. | MR | Zbl

[21] G. Nebe, N.J.A Sloane, A catalogue of lattices. http://www.research.att.com/ ˜njas/lattices/index.html

[22] G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10. J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. | Numdam | MR | Zbl

[23] G. Nebe, B. Venkov, The strongly perfect lattices of dimension 12. In preparation. | Numdam

[24] B. Runge, On Siegel modular forms I. J. Reine Angew. Math. 436 (1993), 57–85. | MR | Zbl

[25] B. Runge, On Siegel modular forms II. Nagoya Math. J. 138 (1995), 179–197. | MR | Zbl

[26] B. Runge, Codes and Siegel modular forms. Discrete Math. 148 (1995), 175–205. | MR | Zbl

[27] D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups. Amer. J. Math. 102 (4) (1980), 625–662. | MR | Zbl

[28] D. Stanton, Orthogonal polynomials and Chevalley groups. In Special functions: Group theoretical aspects and applications R.A. Askey, T.H. Koornwinder, W. Schempp editors, Mathematics and its applications, D. Reidel Publishing Company, 1984. | MR | Zbl

[29] B. Venkov, Réseaux et designs sphériques. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). | MR | Zbl

[30] H. Wei, Y. Wang, Suborbits of the transitive set of subspaces of type (m,0) under finite classical groups. Algebra Colloq. 3:1 (1996), 73–84. | MR | Zbl

Cited by Sources: