For an integer we denote by the largest prime factor of . We obtain several upper bounds on the number of solutions of congruences of the form and use these bounds to show that
Pour un entier , notons le plus grand facteur premier de . Nous obtenons des majorations sur le nombre de solutions de congruences de la forme et nous utilisons ces bornes pour montrer que
@article{JTNB_2005__17_3_859_0, author = {Luca, Florian and Shparlinski, Igor E.}, title = {On the largest prime factor of $n!+ 2^n-1$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {859--870}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.524}, mrnumber = {2212129}, zbl = {1097.11006}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.524/} }
TY - JOUR AU - Luca, Florian AU - Shparlinski, Igor E. TI - On the largest prime factor of $n!+ 2^n-1$ JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 859 EP - 870 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.524/ DO - 10.5802/jtnb.524 LA - en ID - JTNB_2005__17_3_859_0 ER -
%0 Journal Article %A Luca, Florian %A Shparlinski, Igor E. %T On the largest prime factor of $n!+ 2^n-1$ %J Journal de théorie des nombres de Bordeaux %D 2005 %P 859-870 %V 17 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.524/ %R 10.5802/jtnb.524 %G en %F JTNB_2005__17_3_859_0
Luca, Florian; Shparlinski, Igor E. On the largest prime factor of $n!+ 2^n-1$. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 3, pp. 859-870. doi : 10.5802/jtnb.524. http://archive.numdam.org/articles/10.5802/jtnb.524/
[1] R. C. Baker, G. Harman, The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math. 138, Birkhäuser, Boston, MA, 1996, 39–103, | MR | Zbl
[2] R. C. Baker, G. Harman, Shifted primes without large prime factors. Acta Arith. 83 (1998), 331–361. | MR | Zbl
[3] P. Erdős, R. Murty, On the order of . Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. | Zbl
[4] P. Erdős, C. Stewart, On the greatest and least prime factors of . J. London Math. Soc. 13 (1976), 513–519. | MR | Zbl
[5] É. Fouvry, Théorème de Brun-Titchmarsh: Application au théorème de Fermat. Invent. Math. 79 (1985), 383–407. | MR | Zbl
[6] H.-K. Indlekofer, N. M. Timofeev, Divisors of shifted primes. Publ. Math. Debrecen 60 (2002), 307–345. | MR | Zbl
[7] F. Luca, I. E. Shparlinski, Prime divisors of shifted factorials. Bull. London Math. Soc. 37 (2005), 809–817. | MR | Zbl
[8] M.R. Murty, S. Wong, The conjecture and prime divisors of the Lucas and Lehmer sequences. Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 43–54. | MR | Zbl
[9] F. Pappalardi, On the order of finitely generated subgroups of and divisors of . J. Number Theory 57 (1996), 207–222. | MR | Zbl
[10] K. Prachar, Primzahlverteilung. Springer-Verlag, Berlin, 1957. | MR | Zbl
Cited by Sources: