Very little is known regarding the Galois group of the maximal -extension unramified outside a finite set of primes of a number field in the case that the primes above are not in . We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.
On connait très peu à propos du groupe de Galois de la -extension maximale non-ramifiée en dehors d’un ensemble fini de nombres premiers d’un corps de nombres lorsque les nombres premiers au-dessus de ne sont pas dans . Nous décrivons des méthodes pour calculer ce groupe quand il est fini et ses propriétées conjecturales quand il est infini.
@article{JTNB_2007__19_1_59_0, author = {Boston, Nigel}, title = {Galois groups of tamely ramified $ p$-extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--70}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.573}, zbl = {1123.11038}, mrnumber = {2332053}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.573/} }
TY - JOUR AU - Boston, Nigel TI - Galois groups of tamely ramified $ p$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 59 EP - 70 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.573/ DO - 10.5802/jtnb.573 LA - en ID - JTNB_2007__19_1_59_0 ER -
Boston, Nigel. Galois groups of tamely ramified $ p$-extensions. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 59-70. doi : 10.5802/jtnb.573. http://archive.numdam.org/articles/10.5802/jtnb.573/
[1] M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192. | MR | Zbl
[2] W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880. | MR | Zbl
[3] Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341. | MR | Zbl
[4] Y.Barnea, A.Shalev, Hausdorff dimension, pro- groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091. | MR | Zbl
[5] L.Bartholdi, M.R.Bush, Maximal unramified -extensions of imaginary quadratic fields and . To appear in J. Number Theory.
[6] L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J. | MR | Zbl
[7] W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993.
[8] N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169. | MR | Zbl
[9] N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50. | MR | Zbl
[10] N.Boston, Embedding -groups in groups generated by involutions. J. Algebra 300 (2006), 73–76. | MR | Zbl
[11] N.Boston, C.R.Leedham-Green, Explicit computation of Galois -groups unramified at . J. Algebra 256 (2002), 402–413. | MR | Zbl
[12] N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179. | MR | Zbl
[13] D.J.Broadhurst, On the enumeration of irreducible -fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear).
[14] M.R.Bush, Computation of Galois groups associated to the -class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325. | MR | Zbl
[15] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984. | MR | Zbl
[16] H.Cohn, J.C.Lagarias, On the existence of fields governing the -invariants of the classgroup of as varies. Math. Comp. 37 (1983), 711–730. | MR | Zbl
[17] B.Eick, H.Koch, On maximal -extensions of with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear). | MR
[18] J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong. | Zbl
[19] J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45. | MR | Zbl
[20] E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102. | MR | Zbl
[21] R.Grigorchuk, Just infinite branch groups. New Horizons in pro- Groups, Birkhauser, Boston 2000. | MR | Zbl
[22] R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246. | MR | Zbl
[23] F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423. | MR | Zbl
[24] G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67. | Zbl
[25] H.Kisilevsky, Number fields with class number congruent to and Hilbert’s theorem . J. Number Theory 8 (1976), no. 3, 271–279 | Zbl
[26] H.Koch, Galois theory of -extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. | MR | Zbl
[27] H.Koch, B.Venkov, The -tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13. | MR | Zbl
[28] J.Labute, Mild pro--groups and Galois groups of -extensions of . J. Reine Angew. Math. (to appear). | MR | Zbl
[29] A.Lubotzky, Group presentations, -adic analytic groups and lattices in . Ann. Math. 118 (1983), 115–130. | MR | Zbl
[30] J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418. | MR | Zbl
[31] E.A.O’Brien, The -group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698. | Zbl
[32] R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113. | MR | Zbl
[33] I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. | Numdam | MR
[34] M.Stoll, Galois groups over of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244. | MR | Zbl
[35] G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146. | MR | Zbl
[36] E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro- groups, Birkhaüser Boston, Boston, MA, 2000. | MR | Zbl
[37] A.Zubkov, Non-abelian free pro--group are not represented by -matrices. Siberian Math.J, 28 (1987), 64–69. | Zbl
Cited by Sources: